Automatic vision-based inspection systems have played a key role in product quality assessment for decades through the segmentation, detection, and classification of defects. Historically, machine learning frameworks, based on hand-crafted feature extraction, selection, and validation, counted on a combined approach of parameterized image processing algorithms and explicated human knowledge. The outstanding performance of deep learning (DL) for vision systems, in automatically discovering a feature representation suitable for the corresponding task, has exponentially increased the number of scientific articles and commercial products aiming at industrial quality assessment. In such a context, this article reviews more than 220 relevant articles from the related literature published until February 2023, covering the recent consolidation and advances in the field of fully-automatic DL-based surface defects inspection systems, deployed in various industrial applications. The analyzed papers have been classified according to a bi-dimensional taxonomy, that considers both the specific defect recognition task and the employed learning paradigm. The dependency on large and high-quality labeled datasets and the different neural architectures employed to achieve an overall perception of both well-visible and subtle defects, through the supervision of fine or/and coarse data annotations have been assessed. The results of our analysis highlight a growing research interest in defect representation power enrichment, especially by transferring pre-trained layers to an optimized network and by explaining the network decisions to suggest trustworthy retention or rejection of the products being evaluated.
The non-destructive testing methods offer great benefit in detecting and classifying the weld defects. Among these, infrared (IR) thermography stands out in the inspection, characterization, and analysis of the defects from the camera image sequences, particularly with the recent advent of deep learning. However, in IR, the defect classification becomes a cumbersome task because of the exposure to the inconsistent and unbalanced heat source, which requires additional supervision. In light of this, authors present a fully automated system capable of detecting defective welds according to the electrical resistance properties in the inline mode. The welding process is captured by an IR camera that generates a video sequence. A set of features extracted by such video feeds supervised machine learning and deep learning algorithms in order to build an industrial diagnostic framework for weld defect detection. The experimental study validates the aptitude of a customized convolutional neural network architecture to classify the malfunctioning weld joints with mean accuracy of 99% and median f1 score of 73% across five-fold cross validation on our locally acquired real world dataset. The outcome encourages the integration of thermographic-based quality control frameworks in all applications where fast and accurate recognition and safety assurance are crucial industrial requirements across the production line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.