When a system of linear equations is ill-conditioned, regularization techniques provide a quite useful tool for trying to overcome the numerical inherent difficulties: the ill-conditioned system is replaced by another one whose solution depends on a regularization term formed by a scalar and a matrix which are to be chosen. In this paper, we consider the case of several regularizations terms added simultaneously, thus overcoming the problem of the best choice of the regularization matrix. The error of this procedure is analyzed and numerical results prove its efficiency
This paper presents a general framework for Shanks transformations of sequences of elements in a vector space. It is shown that the Minimal Polynomial Extrapolation (MPE), the Modified Minimal Polynomial Extrapolation (MMPE), the Reduced Rank Extrapolation (RRE), the Vector Epsilon Algorithm (VEA), the Topological Epsilon Algorithm (TEA), and Anderson Acceleration (AA), which are standard general techniques designed for accelerating arbitrary sequences and/or solving nonlinear equations, all fall into this framework. Their properties and their connections with quasi-Newton and Broyden methods are studied. The paper then exploits this framework to compare these methods. In the linear case, it is known that AA and GMRES are 'essentially' equivalent in a certain sense while GMRES and RRE are mathematically equivalent. This paper discusses the connection between AA, the RRE, the MPE, and other methods in the nonlinear case.
In this paper, the regularized solutions of an ill–conditioned system of linear equations are computed for several values of the regularization parameter lambda. Then, these solutions are extrapolated at lambda = 0 by various vector rational extrapolations techniques built for that purpose. These techniques are justified by an analysis of the regularized solutions based on the singular value decomposition and the generalized singular value decomposition. Numerical results illustrate the effectiveness of the procedures
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.