Arctic-Boreal lakes emit methane (CH4), a powerful greenhouse gas. Recent studies suggest ebullition may be a dominant methane emission pathway in lakes but its drivers are poorly understood. Various predictors of lake methane ebullition have been proposed, but are challenging to evaluate owing to different geographical characteristics, field locations, and sample densities. Here we compare large geospatial datasets of lake area, lake perimeter, permafrost, landcover, temperature, soil organic carbon content, depth, and greenness with remotely sensed methane ebullition estimates for 5,143 Alaskan lakes. We find that lake wetland fraction (LWF), a measure of lake wetland and littoral zone area, is a leading predictor of methane ebullition (adj. R² = 0.211), followed by lake surface area (adj. R² = 0.201). LWF is inversely correlated with lake area, thus higher wetland fraction in smaller lakes may explain a commonly cited inverse relationship between lake area and methane ebullition. Lake perimeter (adj. R² = 0.176) and temperature (adj. R² = 0.157) are moderate predictors of lake ebullition, and soil organic carbon content, permafrost, lake depth, and greenness are weak predictors. The low adjusted R² values are typical and informative for methane attribution studies. A multiple regression model combining LWF, area, and temperature performs best (adj. R² = 0.325). Our results suggest landscape-scale geospatial analyses can complement smaller field studies, for attributing Arctic-Boreal lake methane emissions to readily available environmental variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.