Background: Bacterial infections are still one of the main factors associated with mortality worldwide. Many radiopharmaceuticals were developed for bacterial imaging, both with single photon emission computed tomography (SPECT) and positron emission tomography (PET) isotopes. This review focuses on PET radiopharmaceuticals, performing a systematic literature review of published studies between 2005 and 2018. Methods: A systematic review of published studies between 2005 and 2018 was performed. A team of reviewers independently screened for eligible studies. Because of differences between studies, we pooled the data where possible, otherwise, we described separately. Quality of evidence was assessed by Quality Assessment of Diagnostic Accuracy Studies (QUADAS) approach. Results: Eligible papers included 35 published studies. Because of the heterogeneity of animal models and bacterial strains, we classified studies in relation to the type of bacterium: Gram-positive, Gram-negative, Gram-positive and negative, others. Conclusions: Results highlighted the availability of many promising PET radiopharmaceuticals for bacterial imaging, despite some bias related to animal selection and index test, but few have been translated to human subjects. Results showed a lack of standardized infection models and experimental settings.
The aim of present study was to develop radiolabeled NPs to overcome the limitations of fluorescence with theranostic potential. Synthesis of PLGA-NPs loaded with technetium-99m was based on a Dean-Vortex-Bifurcation Mixer (DVBM) using an innovative microfluidic technique with high batch-to-batch reproducibility and tailored-made size of NPs. Eighteen different formulations were tested and characterized for particle size, zeta potential, polydispersity index, labeling efficiency, and in vitro stability. Overall, physical characterization by dynamic light scattering (DLS) showed an increase in particle size after radiolabeling probably due to the incorporation of the isotope into the PLGA-NPs shell. NPs of 60 nm (obtained by 5:1 PVA:PLGA ratio and 15 mL/min TFR with 99mTc included in PVA) had high labeling efficiency (94.20 ± 5.83%) and > 80% stability after 24 h and showed optimal biodistribution in BALB/c mice. In conclusion, we confirmed the possibility of radiolabeling NPs with 99mTc using the microfluidics and provide best formulation for tumor targeting studies.
Natural killer (NK) cell therapy is a promising alternative to conventional T cell-based treatments, although there is a lack of diagnostic tools to predict and evaluate therapeutic outcomes. Molecular imaging can offer several approaches to non-invasively address this issue. In this study, we systematically reviewed the literature to evaluate the state of the art of NK cell imaging and its translational potential. PubMed and Scopus databases were searched for published articles on the imaging of NK cells in humans and preclinical models. Study quality was evaluated following Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria. We pooled studies as follows: Optical, magnetic resonance imaging (MRI) and nuclear medicine imaging with a total of 21 studies (n = 5, n = 8 and n = 8, respectively). Considering the limitation of comparing different imaging modalities, it appears that optical imaging (OI) of NK cells is very useful in a preclinical setting, but has the least translational potential. MRI provides high quality images without ionizing radiations with lower sensitivity. Nuclear medicine is the only imaging technique that has been applied in humans (four papers), but results were not outstanding due to a limited number of enrolled patients. At present, no technique emerged as superior over the others and more standardization is required in conducting human and animal studies.
This study aims to develop a reliable and reproducible inflammatory bowel disease (IBD) murine model based on a careful spatial–temporal histological characterization. Secondary aims included extensive preclinical studies focused on the in situ expression of clinically relevant biomarkers and targets involved in IBD. C57BL/6 female mice were used to establish the IBD model. Colitis was induced by the oral administration of 2% Dextran Sulfate Sodium (DSS) for 5 days, followed by 2, 4 or 9 days of water. Histological analysis was performed by sectioning the whole colon into rings of 5 mm each. Immunohistochemical analyses were performed for molecular targets of interest for monitoring disease activity, treatment response and predicting outcome. Data reported here allowed us to develop an original scoring method useful as a tool for the histological assessment of preclinical models of DSS-induced IBD. Immunohistochemical data showed a significant increase in TNF-α, α4β7, VEGFRII, GR-1, CD25, CD3 and IL-12p40 expression in DSS mice if compared to controls. No difference was observed for IL-17, IL-23R, IL-36R or F480. Knowledge of the spatial–temporal pattern distribution of the pathological lesions of a well-characterized disease model lays the foundation for the study of the tissue expression of meaningful predictive biomarkers, thereby improving translational success rates of preclinical studies for a personalized management of IBD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.