COVID-19 abatement strategies have risks and uncertainties which could lead to repeating waves of infection. We show—as proof of concept grounded on rigorous mathematical evidence—that periodic, high-frequency alternation of into, and out-of, lockdown effectively mitigates second-wave effects, while allowing continued, albeit reduced, economic activity. Periodicity confers (i) predictability, which is essential for economic sustainability, and (ii) robustness, since lockdown periods are not activated by uncertain measurements over short time scales. In turn—while not eliminating the virus—this fast switching policy is sustainable over time, and it mitigates the infection until a vaccine or treatment becomes available, while alleviating the social costs associated with long lockdowns. Typically, the policy might be in the form of 1-day of work followed by 6-days of lockdown every week (or perhaps 2 days working, 5 days off) and it can be modified at a slow-rate based on measurements filtered over longer time scales. Our results highlight the potential efficacy of high frequency switching interventions in post lockdown mitigation. All code is available on Github at https://github.com/V4p1d/FPSP_Covid19. A software tool has also been developed so that interested parties can explore the proof-of-concept system.
The paper deals with the problem of output regulation for nonlinear systems in a multivariable and "nonequilibrium" context. A "chicken-egg dilemma" arising in the design of the internal model and the stabiliser units is pointed out and a general adaptive framework yielding approximate, possibly asymptotic, regulation is proposed to cope with it. It is shown that the framework allows one to deal with classes of nonlinear systems not covered by existing results and provides new insights about the use of identification tools in the design of adaptive internal models. The vision that emerges from the paper is that approximate, rather than asymptotic, regulation is the more appropriate way of approaching the problem in a multivariable and uncertain context, by thus opening new perspectives about the design of robust internal model-based regulators.
Testing, tracking and tracing abilities have been identified as pivotal in helping countries to safely reopen activities after the first wave of the COVID-19 virus. Contact tracing apps give the unprecedented possibility to reconstruct graphs of daily contacts, so the question is: who should be tested? As human contact networks are known to exhibit community structure, in this paper we show that the Kemeny constant of a graph can be used to identify and analyze bridges between communities in a graph. Our ‘Kemeny indicator’ is the value of the Kemeny constant in the new graph that is obtained when a node is removed from the original graph. We show that testing individuals who are associated with large values of the Kemeny indicator can help in efficiently intercepting new virus outbreaks, when they are still in their early stage. Extensive simulations provide promising results in early identification and in blocking the possible ‘super-spreaders’ links that transmit disease between different communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.