The antiaromaticity of a series of dications of p-substituted diphenylmethylidene fluorenes was explored using three criteria attributed to aromaticity/antiaromaticity. The relative stability of the dications (energetic criterion) was measured via the redox potentials obtained by electrochemical oxidation under very fast sweep rates with microelectrodes. Comparison of redox potentials with those of a model system, p-substituted tetraphenylethylenes, shows relatively small destabilization of the potentially antiaromatic fluorenylidene dication. However, the amount of destabilization is comparable with the limited electrochemical data available for other antiaromatic systems. Nucleus independent chemical shifts (NICS) were calculated for these dications (magnetic criterion) and indicated their antiaromaticity. A good linear relationship between experimental and calculated (B3LYP/6-31G(d)) (1)H and (13)C NMR shifts for the three dications, 3c, 3e, and 3f, for which NMR data has been reported, validated the accuracy of the NICS values. Bond length alternation/elongation (structural criterion) was explored via the harmonic oscillator model of aromaticity (HOMA) using the geometries calculated with density functional theory, but there was insufficient variation to evaluate relative antiaromaticity. In addition, the presence of benzannulation appears to restrict bond length alternation to such an extent that the magnitude of the HOMA index is of little use in evaluating the antiaromaticity of many polycyclic hydrocarbons. Both NICS values and redox potentials for formation of the dication in these systems show a strong linear correlation with sigma(p)(+) values, with the more antiaromatic fluorenylidene dication possessing the more electron-withdrawing substituent. The correlation between NICS values and redox potentials is also good, as might be expected, suggesting a strong relationship between magnetic and energetic characteristics of antiaromaticity. However, magnetic characteristics appear to be a more sensitive probe than energetic characteristics evaluated through redox potentials or structural characteristics evaluated through HOMA calculations.
[reaction: see text] Electrochemical oxidation of meta-substituted diphenylmethylidenefluorenes (3a-g) results in the formation of fluorenylidene dications that are shown to be antiaromatic through calculation of the nucleus independent chemical shift (NICS) for the 5- and 6-membered rings of the fluorenyl system. There is a strong linear correlation between the redox potential for the dication and both the calculated NICS and sigma(m). Redox potentials for formation of dications of analogously substituted tetraphenylethylenes shows that, with the exception of the p-methyl derivative, the redox potentials for these dications are less positive than for formation of the dications of 3a-g and for dications of p-substituted diphenylmethylidenefluorenes, 2a-g. The greater instability of dications of 2a-g and 3a-g compared to the reference system implies their antiaromaticity, which is supported by the positive NICS values. The redox potentials for formation of the dications of meta-substituted diphenylmethylidenes (3a-g) are more positive than for the formation of dications of para-substituted diphenylmethylidenes (2a-g), indicating their greater thermodynamic instability. The NICS values for dications of 3a-g are more antiaromatic than for dications of 2a-g, which is consistent with their greater instability of the dications of 3a-g. Although the substituted diphenylmethyl systems are not able to interact with the fluorenyl system through resonance because of their geometry, they are able to moderate the antiaromaticity of the fluorenyl cationic system. Two models have been suggested for this interaction, sigma to p donation and the ability of the charge on the substituted ring system to affect delocalization. Examination of bond lengths shows very limited variation, which argues against sigma to p donation in these systems. A strong correlation between NICS and sigma constants suggests that factors that affect the magnitude of the charge on the benzylic (alpha) carbon of the diphenylmethyl cation affect the antiaromaticity of the fluorenyl cation. Calculated atomic charges on carbons 1-8 and 10-13 show an increase in positive charge, and therefore greater delocalization of charge in the fluorenyl system, with increasing electronegativity of the substituent. The change in the amount of positive charge correlated strongly with NICS, supporting the model in which the amount of delocalization of charge is related to the antiaromaticity of the species. Thus, both aromatic and antiaromatic species are characterized by extensive delocalization of electron density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.