In this paper, we propose IoTChain, a combination of the OSCAR architecture [1] and the ACE authorization framework [2] to provide an E2E solution for the secure authorized access to IoT resources. IoTChain consists of two components, an authorization blockchain based on the ACE framework and the OSCAR object security model, extended with a group key scheme. The blockchain provides a flexible and trustless way to handle authorization while OSCAR uses the public ledger to set up multicast groups for authorized clients. To evaluate the feasibility of our architecture, we have implemented the authorization blockchain on top of a private Ethereum network. We report on several experiments that assess the performance of different architecture components.
In distributed quantum computing architectures, with the network and communications functionalities provided by the Quantum Internet, remote quantum processing units can communicate and cooperate for executing computational tasks that single, noisy, intermediate-scale quantum devices cannot handle by themselves. To this aim, distributed quantum computing requires a new generation of quantum compilers, for mapping any quantum algorithm to any distributed quantum computing architecture. With this perspective, in this article, we first discuss the main challenges arising with compiler design for distributed quantum computing. Then, we analytically derive an upper bound of the overhead induced by quantum compilation for distributed quantum computing. The derived bound accounts for the overhead induced by the underlying computing architecture as well as the additional overhead induced by the suboptimal quantum compiler-expressly designed in this article to achieve three key features, namely, general-purpose, efficient, and effective. Finally, we validate the analytical results, and we confirm the validity of the compiler design through an extensive performance analysis. INDEX TERMSDistributed quantum computing, distributed quantum systems, quantum compiling, quantum Internet, quantum networks. Engineering uantum Transactions on IEEE Ferrari et al.: COMPILER DESIGN FOR DISTRIBUTED QUANTUM COMPUTING
Systems that exhibit complex behaviours often contain inherent dynamical structures which evolve over time in a coordinated way. In this paper, we present a methodology based on the Relevance Index method aimed at revealing the dynamical structures hidden in complex systems. The method iterates two basic steps: detection of relevant variable sets based on the computation of the Relevance Index, and application of a sieving algorithm, which refines the results. This approach is able to highlight the organization of a complex system into sets of variables, which interact with one another at different hierarchical levels, detected, in turn, in the different iterations of the sieve. The method can be applied directly to systems composed of a small number of variables, whereas it requires the help of a custom metaheuristic in case of systems with larger dimensions. We have evaluated the potential of the method by applying it to three case studies: synthetic data generated by a nonlinear stochastic dynamical system, a small-sized and well-known system modelling a catalytic reaction, and a larger one, which describes the interactions within a social community, that requires the use of the metaheuristic. The experiments we made to validate the method produced interesting results, effectively uncovering hidden details of the systems to which it was applied.
The increasing diffusion of cloud technologies offers new opportunities for distributed and collaborative computing. Volunteer clouds are a prominent example, where participants join and leave the platform and collaborate by sharing computational resources. The high complexity, dynamism and unpredictability of such scenarios call for decentralized self-* approaches. We present in this paper a framework for the design and evaluation of self-adaptive collaborative task execution strategies in volunteer clouds. As a byproduct, we propose a novel strategy based on the Ant Colony Optimization paradigm, that we validate through simulation-based statistical analysis over Google workload data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.