Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in
This paper considers the problem of identification, estimation and inference in the case of spatial panel data models with heterogeneous spatial lag coefficients, with and without (weakly) exogenous regressors, and subject to heteroskedastic errors. A quasi maximum likelihood (QML) estimation procedure is developed and the conditions for identification of spatial coefficients are derived. Regularity conditions are established for the QML estimators of individual spatial coefficients, as well as their means (the mean group estimators), to be consistent and asymptotically normal. Small sample properties of the proposed estimators are investigated by Monte Carlo simulations for Gaussian and non-Gaussian errors, and with spatial weight matrices of differing degrees of sparsity. The simulation results are in line with the paper's key theoretical findings even for panels with moderate time dimensions, irrespective of the number of cross section units. An empirical application to U.S. house price changes during the 1975-2014 period shows a significant degree of heterogeneity in spill-over effects over the 338 Metropolitan Statistical Areas considered. JEL-Codes: C210, C230.
The panel-data regression models are frequently applied to micro-level data, which often suffer from data contamination, erroneous observations, or unobserved heterogeneity. Despite the adverse effects of outliers on classical estimation methods, there are only a few robust estimation methods available for fixed-effect panel data. Aiming at estimation under weak moment conditions, a new estimation approach based on two different data transformation is proposed. Considering several robust estimation methods applied on the transformed data, we derive the finite-sample, robust, and asymptotic properties of the proposed estimators including their breakdown points and asymptotic distribution. The finite-sample performance of the existing and proposed methods is compared by means of Monte Carlo simulations.
This paper considers the problem of identification, estimation and inference in the case of spatial panel data models with heterogeneous spatial lag coefficients, with and without (weakly) exogenous regressors, and subject to heteroskedastic errors. A quasi maximum likelihood (QML) estimation procedure is developed and the conditions for identification of spatial coefficients are derived. Regularity conditions are established for the QML estimators of individual spatial coefficients, as well as their means (the mean group estimators), to be consistent and asymptotically normal. Small sample properties of the proposed estimators are investigated by Monte Carlo simulations for Gaussian and non-Gaussian errors, and with spatial weight matrices of differing degrees of sparsity. The simulation results are in line with the paper's key theoretical findings even for panels with moderate time dimensions, irrespective of the number of cross section units. An empirical application to U.S. house price changes during the 1975-2014 period shows a significant degree of heterogeneity in spill-over effects over the 338 Metropolitan Statistical Areas considered. JEL-Codes: C210, C230.
This paper considers the problem of identification, estimation and inference in the case of spatial panel data models with heterogeneous spatial lag coefficients, with and without (weakly) exogenous regressors, and subject to heteroskedastic errors. A quasi maximum likelihood (QML) estimation procedure is developed and the conditions for identification of spatial coefficients are derived. Regularity conditions are established for the QML estimators of individual spatial coefficients, as well as their means (the mean group estimators), to be consistent and asymptotically normal. Small sample properties of the proposed estimators are investigated by Monte Carlo simulations for Gaussian and non-Gaussian errors, and with spatial weight matrices of differing degrees of sparsity. The simulation results are in line with the paper's key theoretical findings even for panels with moderate time dimensions, irrespective of the number of cross section units. An empirical application to U.S. house price changes during the 1975-2014 period shows a significant degree of heterogeneity in spill-over effects over the 338 Metropolitan Statistical Areas considered. JEL-Codes: C210, C230.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.