The aim of the present study was to assess the drying kinetic of tucum fruits (epicarp and mesocarp) Meyer at three different temperatures (50, 60, and 70 °C). The physicochemical characterization, water activity, moisture content, including β-carotene and vitamin C content- and dried fruits were analyzed. The fruit fractions presented high β-carotene, protein and lipid levels. Fatty acid profile showed oleic acid as the major fatty acid. Different mathematical models were computed to assess the drying process. The Page model was observed to be the best to describe the drying kinetic with the highest correlation coefficient () 0.99 and the least Chi squared () close to 10 at the studied temperatures. The drying process reduced water activity to desirable levels in all trials and β-carotene retentions after drying remained at satisfactory levels, fact that resulted in minimum value of 63% and approximately 94% in some cases. Vitamin C retention was comparatively more around 20-40% compared to control.
The use of fats with a low melting point is attractive to the food industry, as it contributes to improving the texture, color and stability characteristics of the food. These fats are obtained from vegetable oils through some processes such as hydrogenation or interesterification. However, the partial hydrogenation process leads to the formation of trans fat. In several countries, actions have been taken to eliminate the presence of elaidic acid, a trans fatty acid (C18: 1t) from processed foods. This trans fatty acid and palmitic acid, a common saturated fatty acid (C16: 0) are proven to be atherogenic. The aim of this work was to evaluate the composition of fatty acids of 39 types of commercialized foods in Brazil, including cookies, snacks, wafers, instant noodles, frozen sandwiches and pizzas, mixtures for food preparation, microwave popcorn, margarines, spreadable cheeses and pastry dough. The lipids were extracted and their Fatty Acid Methyl Esters (FAMEs) identified by Gas-Chromatography (GC). The fatty acids found in greater quantity were oleic, linoleic and palmitic acids; whereas the trans fatty acids were detected in 51.3% of the samples. On the other hand, when trans fast were reduced in some foods, it could be observed increases in the palmitic acid (C16:0) content. This high content of palmitic acid is justified by the addition of palm oil and its derivatives, which can be used in interesterified oil mixtures or can be directly used in industrialized food formulations, even without interesterification. Governments and organizations in favor of human health should be aware that the use of dietary fatty acids which compromise the atherogenic index is not a healthy alternative. Consumers should therefore be alerted to the risk of consuming foods containing these fats until the food industry is banned from using them or finds healthier alternatives for making food.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.