HLA-E is a non-classical MHC molecule whose expression by tumour cells has been recently reported in several human cancer types. We studied HLA-E expression in colorectal cancer patients, its clinical significance and prognostic value, as well as characterized its expression in colorectal cancer cell lines. We analysed HLA-E expression at the transcript level by qRT-PCR in micro-dissected samples and at the protein level by semiquantitative immunohistochemistry on paraffin-embedded tissue sections from 42 biopsies of colorectal cancer patients. We observed that HLA-E transcript and protein are spontaneously overexpressed in a significant proportion of colorectal tumour biopsies, as compared to normal mucosae. We also found a negative correlation between HLA-E expression and the CD57 + cells infiltrate. Moreover, we analysed HLA-E expression in several colorectal cancer cell lines and demonstrated that IFN-γ upregulates the expression of membrane HLA-E in vitro. Interestingly, we demonstrated that colorectal cancer cell lines overexpressing HLA-E at the cell surface inhibited NK-mediated cell lysis. Although IFN-γ regulatory role needs further investigation, we provide evidence suggesting that this cytokine, within the tumour microenvironment, could promote HLA-E translocation to the surface of tumour epithelial cells. Furthermore, we showed that upregulation of HLA-E could be a marker of shorter disease-free survival in Dukes' C patients and we suggest that this molecule renders tumours less susceptible to immune attack.
Despite NK cells being originally identified because of their ability to kill tumor cells in vitro, only limited information is available on NK cells infiltration of malignant tumors, especially in humans. NK cells infiltrating human colorectal carcinomas (CRCs) were analyzed to identify their potential protective role in an antitumor immune response. The expression and function of relevant molecules were analyzed from different sources, comparing tumor-associated NK cells (TANKs) with autologous peripheral blood NK cells (PB-NKs) from CRC patients-the latter in comparison with PB-NKs from normal donors. TANKs displayed a profound alteration of their phenotype with a drastic reduction of NK cell receptor expression. Co-culture experiments showed that CRC cells produce modulation in NK phenotype and functionality. Moreover, PB-NKs from CRC patients also exhibited an altered phenotype and profound defects in the ability to activate degranulation and IFN-γ production. For the first time, TANK and PB-NK cells from CRC patients have been characterized. It is shown that they are not capable of producing relevant cytokines and degranulate. Taken together, our results suggest that NK cells from CRC patients present alterations of phenotype and function therefore supporting the progression of cancer.
The causative molecular pathways underlying the pathogenesis of colorectal cancer (CRC) need to be better characterized. The purpose of our study was to better understand the genetic mechanism of oncogenesis for human colorectal cancer and to identify new potential tumor markers of use in clinical practice. We used cDNA microarrays to compare gene expression profiles of colorectal biopsies from 25 CRC patients and 13 normal mucosa from adjacent non-cancerous tissues. Findings were validated by real-time PCR; in addition, Western blotting and immunochemistry analysis were carried out as further confirmation of differential expression at a protein level. Comparing cancerous tissues with normal colonic mucosa we identified 584 known genes differentially expressed to a significant degree (p<0.001). Many of the transcripts that were more abundant in tumors than in non-neoplastic tissues appear to reflect important events for colon carcinogenesis. For example, a significant number of these genes serve as apoptotic inhibitors (e.g. BFAR, BIRC1, BIRC6). Furthermore, we observed the simultaneous up-regulation of HLA-E and the down-regulation of ß2-microglobulin; these genes strongly support a potential tumor escape strategy from immune surveillance in colon cancer tissues. Our study provides new gene candidates in the pathogenesis of human CRC disease. From our results we hypothesize that CRC cells escape immune surveillance through a specific gene expression alteration; moreover, over-expression of several survival genes seems to confer a more anti-apoptotic phenotype. These genes are involved in pathways not previously implicated in CRC pathogenesis and they may provide new targets for therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.