Magnetic force microscopy (MFM) is a powerful extension of atomic force microscopy (AFM), which mostly uses nano-probes with functional coatings for studying magnetic surface features. Although well established, additional layers inherently increase apex radii, which reduce lateral resolution and also contain the risk of delamination, rendering such nano-probes doubtful or even useless. To overcome these limitations, we now introduce the additive direct-write fabrication of magnetic nano-cones via focused electron beam-induced deposition (FEBID) using an HCo3Fe(CO)12 precursor. The study first identifies a proper 3D design, confines the most relevant process parameters by means of primary electron energy and beam currents, and evaluates post-growth procedures as well. That way, highly crystalline nano-tips with minimal surface contamination and apex radii in the sub-15 nm regime are fabricated and benchmarked against commercial products. The results not only reveal a very high performance during MFM operation but in particular demonstrate virtually loss-free behavior after almost 8 h of continuous operation, thanks to the all-metal character. Even after more than 12 months of storage in ambient conditions, no performance loss is observed, which underlines the high overall performance of the here-introduced FEBID-based Co3Fe MFM nano-probes.
3D nanoprinting via focused electron beam induced deposition (FEBID) is applied for fabrication of all-metal nanoprobes for atomic force microscopy (AFM)-based electrical operation modes. The 3D tip concept is based on a hollow-cone (HC) design, with all-metal material properties and apex radii in the sub-10 nm regime to allow for high-resolution imaging during morphological imaging, conductive AFM (CAFM) and electrostatic force microscopy (EFM). The study starts with design aspects to motivate the proposed HC architecture, followed by detailed fabrication characterization to identify and optimize FEBID process parameters. To arrive at desired material properties, e-beam assisted purification in low-pressure water atmospheres was applied at room temperature, which enabled the removal of carbon impurities from as-deposited structures. The microstructure of final HCs was analyzed via scanning transmission electron microscopy—high-angle annular dark field (STEM-HAADF), whereas electrical and mechanical properties were investigated in situ using micromanipulators. Finally, AFM/EFM/CAFM measurements were performed in comparison to non-functional, high-resolution tips and commercially available electric probes. In essence, we demonstrate that the proposed all-metal HCs provide the resolution capabilities of the former, with the electric conductivity of the latter onboard, combining both assets in one design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.