Abstract:This paper describes the HISTALP database, consisting of monthly homogenised records of temperature, pressure, precipitation, sunshine and cloudiness for the 'Greater Alpine Region' (GAR,(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(43)(44)(45)(46)(47)(48)(49). The longest temperature and air pressure series extend back to 1760, precipitation to 1800, cloudiness to the 1840s and sunshine to the 1880s. A systematic QC procedure has been applied to the series and a high number of inhomogeneities (more than 2500) and outliers (more than 5000) have been detected and removed. The 557 HISTALP series are kept in different data modes: original and homogenised, gap-filled and outlier corrected station mode series, grid-1 series (anomaly fields at 1°× 1°, lat × long) and Coarse Resolution Subregional (CRS) mean series according to an EOF-based regionalisation. The leading climate variability features within the GAR are discussed through selected examples and a concluding linear trend analysis for 100, 50 and 25-year subperiods for the four horizontal and two altitudinal CRSs. Among the key findings of the trend analysis is the parallel centennial decrease/increase of both temperature and air pressure in the 19th/20th century. The 20th century increase (+1.2°C/+1.1 hPa for annual GAR-means) evolved stepwise with a first peak near 1950 and the second increase (1.3°C/0.6hPa per 25 years) starting in the 1970s. Centennial and decadal scale temperature trends were identical for all subregions. Air pressure, sunshine and cloudiness show significant differences between low versus high elevations. A long-term increase of the high-elevation series relative to the low-elevation series is given for sunshine and air pressure. Of special interest is the exceptional high correlation near 0.9 between the series on mean temperature and air pressure difference (high-minus low-elevation). This, further developed via some atmospheric statics and thermodynamics, allows the creation of 'barometric temperature series' without use of the measures of temperature. They support the measured temperature trends in the region. Precipitation shows the most significant regional and seasonal differences with, e.g., remarkable opposite 20th century evolution for NW (9% increase) versus SE (9% decrease). Other long-and short-term features are discussed and indicate the promising potential of the new database for further analyses and applications.
The Italian monthly temperature (mean, maximum and minimum) and precipitation secular data set was updated and completely revised. Station density and metadata availability were greatly improved and the series were subjected to a detailed quality control and homogenisation procedure. The data homogenisation is described in detail. The bias affecting original data is quantified by studying the temporal evolution of the mean adjustments applied to the series and examined in the light of the stations history. The results stress the importance of homogenisation in climate change studies.The final data set was clustered into climatically homogeneous regions by means of a Principal Component Analysis. Yearly and seasonal trend analyses were performed both on regional average series and on the mean Italian series. The results highlight a positive trend for mean temperature of about 1 K per century all over Italy; it is generally higher for minimum temperature than for the maximum temperature. The progressive application of trend analysis shows that, in the last 50 years, behaviour is the opposite; the maximum temperature trend being stronger than that of the minimum temperature. This has led to a negative trend in the daily temperature range that for the last 50 years has become positive. Precipitation shows a decreasing tendency, even if low and rarely significant, the negative trend being only 5% per century on a yearly basis.
Abstract. The COST (European Cooperation in Science and Technology) Action ES0601: advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random independent break-type inhomogeneities with normally distributed breakpoint sizes were added to the simulated datasets. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added.Published by Copernicus Publications on behalf of the European Geosciences Union. V. K. C. Venema et al.: Benchmarking monthly homogenization algorithmsParticipants provided 25 separate homogenized contributions as part of the blind study. After the deadline at which details of the imposed inhomogeneities were revealed, 22 additional solutions were submitted. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Training the users on homogenization software was found to be very important. Moreover, stateof-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that automatic algorithms can perform as well as manual ones.
This paper investigates temperature variability in the Alps and their surroundings based on 97 instrumental series of monthly mean temperatures. A discussion of the initial homogenizing procedure illustrates its advantages and risks. A comparison of the homogenized series with the original series clearly shows the necessity to homogenize. Each of the original series had breaks (an average of five per series) and the mean of all series was systematically biased by non-climatic noise. This noise has subdued the long-term amplitude of the temperature evolution in the region by 0.5 K. The relatively high spatial resolution of the data enabled a regionalization within the study area of 680000 km 2 into six sub-regions based on principal component analysis of the monthly series. Long-term temperature evolution proved to be highly similar across the region-thus making a mean series (averaged over all 97 single series) representative of the study area. Trend analysis (based on progressive forward and backward Mann-Kendall statistics and on progressive analysis of linear regression coefficients) was performed on seasonal and annual series. The results diverge from those of global datasets. This is mainly due to the extension of the 240-year Alpine dataset by 100 years prior to the mid-19th century, and also due to the advantages of a dense and homogenized regional dataset. The long-term features include an initial decrease of the annual and seasonal series to a minimum followed by a positive trend until 1998. The minima are 1890 for the entire year and winter, 1840 for spring and 1920 for summer and autumn, respectively. The initial decreasing trend is more evident in spring and summer, less in autumn and smallest in winter. The mean annual temperature increase since 1890 in the Alps is 1.1 K, which is twice as much as the 0.55 K in the respective grid boxes of the most frequently used global dataset of the Climatic Research Unit (CRU), University of East Anglia. To enable an easier and more systematic handling of the dataset, these data have been interpolated to a 1°×1°longitude-latitude grid. The 105 low-elevation and 16 high-elevation grid point series are widely available without restrictions for scientific research and can be obtained from the authors. Copyright
Instrumental temperature recording in the Greater Alpine Region (GAR) began in the year 1760. Prior to the 1850-1870 period, after which screens of different types protected the instruments, thermometers were insufficiently sheltered from direct sunlight so were normally placed on north-facing walls or windows. It is likely that temperatures recorded in the summer half of the year were biased warm and those in the winter half biased cold, with the summer effect dominating. Because the changeover to screens often occurred at similar times, often coincident with the formation of National Meteorological Services (NMSs) in the GAR, it has been difficult to determine the scale of the problem, as all neighbour sites were likely to be similarly affected. This paper uses simultaneous measurements taken for eight recent years at the old and modern site at Kremsmünster, Austria to assess the issue. The temperature differences between the two locations (screened and unscreened) have caused a change in the diurnal cycle, which depends on the time of year. Starting from this specific empirical evidence from the only still existing and active early instrumental measuring site in the region, we developed three correction models Climatic Change (2010) 101:41-67 for orientations NW through N to NE. Using the orientation angle of the buildings derived from metadata in the station histories of the other early instrumental sites in the region (sites across the GAR in the range from NE to NW) different adjustments to the diurnal cycle are developed for each location. The effect on the 32 sites across the GAR varies due to different formulae being used by NMSs to calculate monthly means from the two or more observations made at each site each day. These formulae also vary with time, so considerable amounts of additional metadata have had to be collected to apply the adjustments across the whole network. Overall, the results indicate that summer (April to September) average temperatures are cooled by about 0.4 • C before 1850, with winters (October to March) staying much the same. The effects on monthly temperature averages are largest in June (a cooling from 0.21 • to 0.93 • C, depending on location) to a slight warming (up to 0.3 • C) at some sites in February. In addition to revising the temperature evolution during the past centuries, the results have important implications for the calibration of proxy climatic data in the region (such as tree ring indices and documentary data such as grape harvest dates). A difference series across the 32 sites in the GAR indicates that summers since 1760 have warmed by about 1 • C less than winters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.