The aim of this paper is to propose a new methodology that allows forecasting, through Vasicek and CIR models, of future expected interest rates (for each maturity) based on rolling windows from observed financial market data. The novelty, apart from the use of those models not for pricing but for forecasting the expected rates at a given maturity, consists in an appropriate partitioning of the data sample. This allows capturing all the statistically significant time changes in volatility of interest rates, thus giving an account of jumps in market dynamics. The performance of the new approach is carried out for different term structures and is tested for both models. It is shown how the proposed methodology overcomes both the usual challenges (e.g. simulating regime switching, volatility clustering, skewed tails, etc.) as well as the new ones added by the current market environment characterized by low to negative interest rates.
Purpose The purpose of this study is to suggest a new framework that we call the CIR#, which allows forecasting interest rates from observed financial market data even when rates are negative. In doing so, we have the objective is to maintain the market volatility structure as well as the analytical tractability of the original CIR model. Design/methodology/approach The novelty of the proposed methodology consists in using the CIR model to forecast the evolution of interest rates by an appropriate partitioning of the data sample and calibration. The latter is performed by replacing the standard Brownian motion process in the random term of the model with normally distributed standardized residuals of the “optimal” autoregressive integrated moving average (ARIMA) model. Findings The suggested model is quite powerful for the following reasons. First, the historical market data sample is partitioned into sub-groups to capture all the statistically significant changes of variance in the interest rates. An appropriate translation of market rates to positive values was included in the procedure to overcome the issue of negative/near-to-zero values. Second, this study has introduced a new way of calibrating the CIR model parameters to each sub-group partitioning the actual historical data. The standard Brownian motion process in the random part of the model is replaced with normally distributed standardized residuals of the “optimal” ARIMA model suitably chosen for each sub-group. As a result, exact CIR fitted values to the observed market data are calculated and the computational cost of the numerical procedure is considerably reduced. Third, this work shows that the CIR model is efficient and able to follow very closely the structure of market interest rates (especially for short maturities that, notoriously, are very difficult to handle) and to predict future interest rates better than the original CIR model. As a measure of goodness of fit, this study obtained high values of the statistics R2 and small values of the root of the mean square error for each sub-group and the entire data sample. Research limitations/implications A limitation is related to the specific dataset as we are examining the period around the 2008 financial crisis for about 5 years and by using monthly data. Future research will show the predictive power of the model by extending the dataset in terms of frequency and size. Practical implications Improved ability to model/forecast interest rates. Originality/value The original value consists in turning the CIR from modeling instantaneous spot rates to forecasting any rate of the yield curve.
Purpose The purpose of this paper is to model interest rates from observed financial market data through a new approach to the Cox–Ingersoll–Ross (CIR) model. This model is popular among financial institutions mainly because it is a rather simple (uni-factorial) and better model than the former Vasicek framework. However, there are a number of issues in describing interest rate dynamics within the CIR framework on which focus should be placed. Therefore, a new methodology has been proposed that allows forecasting future expected interest rates from observed financial market data by preserving the structure of the original CIR model, even with negative interest rates. The performance of the new approach, tested on monthly-recorded interest rates data, provides a good fit to current data for different term structures. Design/methodology/approach To ensure a fitting close to current interest rates, the innovative step in the proposed procedure consists in partitioning the entire available market data sample, usually showing a mixture of probability distributions of the same type, in a suitable number of sub-sample having a normal/gamma distribution. An appropriate translation of market interest rates to positive values has been introduced to overcome the issue of negative/near-to-zero values. Then, the CIR model parameters have been calibrated to the shifted market interest rates and simulated the expected values of interest rates by a Monte Carlo discretization scheme. We have analysed the empirical performance of the proposed methodology for two different monthly-recorded EUR data samples in a money market and a long-term data set, respectively. Findings Better results are shown in terms of the root mean square error when a segmentation of the data sample in normally distributed sub-samples is considered. After assessing the accuracy of the proposed procedure, the implemented algorithm was applied to forecast next-month expected interest rates over a historical period of 12 months (fixed window). Through an error analysis, it was observed that our algorithm provides a better fitting of the predicted expected interest rates to market data than the exponentially weighted moving average model. A further confirmation of the efficiency of the proposed algorithm and of the quality of the calibration of the CIR parameters to the observed market interest rates is given by applying the proposed forecasting technique. Originality/value This paper has the objective of modelling interest rates from observed financial market data through a new approach to the CIR model. This model is popular among financial institutions mainly because it is a rather simple (uni-factorial) and better model than the former Vasicek model (Section 2). However, there are a number of issues in describing short-term interest rate dynamics within the CIR framework on which focus should be placed. A new methodology has been proposed that allows us to forecast future expected short-term interest rates from observed financial market data by preserving the structure of the original CIR model. The performance of the new approach, tested on monthly data, provides a good fit for different term structures. It is shown how the proposed methodology overcomes both the usual challenges (e.g. simulating regime switching, clustered volatility and skewed tails), as well as the new ones added by the current market environment (particularly the need to model a downward trend to negative interest rates).
The aim of this work was to test how returns are distributed across multiple asset classes, markets and sampling frequency. We examine returns of swaps, equity and bond indices as well as the rescaling by their volatilities over different horizons (since inception to Q2-2020). Contrarily to some literature, we find that the realized distributions of logarithmic returns, scaled or not by the standard deviations, are skewed and that they may be better fitted by t-skew distributions. Our finding holds true across asset classes, maturity and developed and developing markets. This may explain why models based on dynamic conditional score (DCS) have superior performance when the underlying distribution belongs to the t-skew family. Finally, we show how sampling and distribution of returns are strictly connected. This is of great importance as, for example, extrapolating yearly scenarios from daily performances may prove not to be correct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.