Spatial terms such as “above”, “in front of”, and “on the left of” are all essential for describing the location of one object relative to another object in everyday communication. Apprehending such spatial relations involves relating linguistic to object representations by means of attention. This requires at least one attentional shift, and models such as the Attentional Vector Sum (AVS) predict the direction of that attention shift, from the sausage to the box for spatial utterances such as “The box is above the sausage”. To the extent that this prediction generalizes to overt gaze shifts, a listener’s visual attention should shift from the sausage to the box. However, listeners tend to rapidly look at referents in their order of mention and even anticipate them based on linguistic cues, a behavior that predicts a converse attentional shift from the box to the sausage. Four eye-tracking experiments assessed the role of overt attention in spatial language comprehension by examining to which extent visual attention is guided by words in the utterance and to which extent it also shifts “against the grain” of the unfolding sentence. The outcome suggests that comprehenders’ visual attention is predominantly guided by their interpretation of the spatial description. Visual shifts against the grain occurred only when comprehenders had some extra time, and their absence did not affect comprehension accuracy. However, the timing of this reverse gaze shift on a trial correlated with that trial’s verification time. Thus, while the timing of these gaze shifts is subtly related to the verification time, their presence is not necessary for successful verification of spatial relations.
We investigated whether two basic forms of deductive inference, Modus Ponens and Disjunctive Syllogism, occur automatically and without awareness. In Experiment 1, we used a priming paradigm with a set of conditional and disjunctive problems. For each trial, two premises were shown. The second premise was presented at a rate designed to be undetectable. After each problem, participants had to evaluate whether a newly-presented target number was odd or even. The target number matched or did not match a conclusion endorsed by the two previous premises. We found that when the target matched the conclusion of a Modus Ponens inference, the evaluation of the target number was reliably faster than baseline even when participants reported that they were not aware of the second premise. This priming effect did not occur for any other valid or invalid inference that we tested, including the Disjunctive Syllogism. In Experiment 2, we used a forced-choice paradigm in which we found that some participants were able to access some information on the second premise when their attention was explicitly directed to it. In Experiment 3, we showed that the priming effect for Modus Ponens was present also in subjects who could not access any information about P(2). In Experiment 4 we explored whether spatial relations (e.g., "a before b") or sentences with quantifiers (e.g., "all a with b") could generate a priming effect similar to the one observed for Modus Ponens. A priming effect could be found for Modus Ponens only, but not for the other relations tested. These findings show that the Modus Ponens inference, in contrast to other deductive inferences, can be carried out automatically and unconsciously. Furthermore, our findings suggest that critical deductive inference schemata can be included in the range of high-level cognitive activities that are carried out unconsciously.
Typical spatial descriptions, such as "The car is in front of the house," describe the position of a located object (LO; e.g., the car) in space relative to a reference object (RO) whose location is known (e.g., the house). The orientation of the RO affects spatial language comprehension via the reference frame selection process. However, the effects of the LO's orientation on spatial language have not received great attention. This study explores whether the pure geometric information of the LO (e.g., its orientation) affects spatial language comprehension using placing and production tasks. Our results suggest that the orientation of the LO influences spatial language comprehension even in the absence of functional relationships.
The aims of this paper are (a) to gather support for the hypothesis that some basic mechanisms of attentional deployment (i.e., its high efficiency in dealing with expected and unexpected inputs) meet the requirements of the inferential system and have possibly evolved to support its functioning, and (b) to show that these orienting mechanisms function in very similar ways in two perceptual tasks and in a symbolic task. The general hypothesis and its predictions are sketched in the Introduction, after a discussion of current findings concerning visual attention and the generalities of the inferential system. In the empirical section, three experiments are presented where participants tracked visual trajectories (Experiments 1 and 3) or arithmetic series (Experiments 2 and 3), responding to the onset of a target event (e.g., to a specific number) and to the repetition of an event (e.g., to a number appearing twice consecutively). Target events could be anticipated when they were embedded in regular series/trajectories; they could be anticipated, with the anticipation later disconfirmed, when a regular series/trajectory was abruptly interrupted before the target event occurred; and they could not be anticipated when the series/trajectory was random. Repeated events could not be anticipated. Results show a very similar pattern of allocation in tracking visual trajectories and arithmetic series: Attention is focused on anticipated events; it is defocused and redistributed when an anticipation is not confirmed by ensuing events; however, performance decreases when dealing with random series/trajectory--that is, in the absence of anticipations. In our view, this is due to the fact that confirmed and disconfirmed anticipations are crucial events for "knowledge revision"--that is, the fine tuning of the inferential system to the environment; attentional mechanisms have developed so as to enhance detection of these events, possibly at all levels of inferential processing.
Typical spatial language sentences consist of describing the location of an object (the located object) in relation to another object (the reference object) as in "The book is above the vase". While it has been suggested that the properties of the located object (the book) are not translated into language because they are irrelevant when exchanging location information, it has been shown that the orientation of the located object affects the production and comprehension of spatial descriptions. In line with the claim that spatial language apprehension involves inferences about relations that hold between objects it has been suggested that during spatial language apprehension people use the orientation of the located object to evaluate whether the logical property of converseness (e.g., if "the book is above the vase" is true, then also "the vase is below the book" must be true) holds across the objects' spatial relation. In three experiments using sentence acceptability rating tasks we tested this hypothesis and demonstrated that when converseness is violated people's acceptability ratings of a scene's description are reduced indicating that people do take into account geometric properties of the located object and use it to infer logical spatial relations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.