The effects of diets with different starch sources on the total tract apparent digestibility and glucose and insulin responses in cats were investigated. Six experimental diets consisting of 35% starch were extruded, each containing one of the following ingredients: cassava flour, brewers rice, corn, sorghum, peas, or lentils. The experiment was carried out on 36 cats with 6 replications per diet in a completely randomized block design. The brewers rice diet offered greater DM, OM, and GE digestibility than the sorghum, corn, lentil, and pea diets (P < 0.05). For starch digestibility, the brewers rice diet had greater values (98.6%) than the sorghum (93.9%), lentil (95.2%), and pea (96.3%) diets (P < 0.05); however, starch digestibility was >93% for all the diets, proving that despite the low carbohydrate content of carnivorous diets, cats can efficiently digest this nutrient when it is properly processed into kibble. Mean and maximum glucose concentration and area under the glucose curve were greater for the corn-based diet than the cassava flour, sorghum, lentil, and pea diets (P < 0.05). The corn-based diets led to greater values for the mean glucose incremental concentration (10.2 mg/dL), maximum glucose incremental concentration (24.8 mg/dL), and area under the incremental glucose curve (185.5 mg.dL(-1).h(-1)) than the lentil diet (2.9 mg/dL, 3.1 mg/dL, and -40.4 mg.dL(-1).h(-1), respectively; P < 0.05). When compared with baseline values, only the corn diet stimulated an increase in the glucose response, occurring at 4 and 10 h postmeal (P < 0.05). The corn-based diet resulted in greater values for maximum incremental insulin concentration and area under the incremental insulin curve than the lentil-based diet (P < 0.05). However, plasma insulin concentrations rose in relation to the basal values for cats fed corn, sorghum, pea, and brewers rice diets (P < 0.05). Variations in diet digestibility and postprandial response can be explained by differences in the chemical composition of the starch source, including fiber content and granule structure, and also differences in the chemical compositions of the diets. The data suggest that starch has less of an effect on the cat postprandial glucose and insulin responses than on those of dogs and humans. This can be explained by the metabolic peculiarities of felines, which may slow and prolong starch digestion and absorption, leading to the delayed, less pronounced effects on their blood responses.
Considering the different potential benefits of divergent fiber ingredients, the effect of 3 fiber sources on energy and macronutrient digestibility, fermentation product formation, postprandial metabolite responses, and colon histology of overweight cats (Felis catus) fed kibble diets was compared. Twenty-four healthy adult cats were assigned in a complete randomized block design to 2 groups of 12 animals, and 3 animals from each group were fed 1 of 4 of the following kibble diets: control (CO; 11.5% dietary fiber), beet pulp (BP; 26% dietary fiber), wheat bran (WB; 24% dietary fiber), and sugarcane fiber (SF; 28% dietary fiber). Digestibility was measured by the total collection of feces. After 16 d of diet adaptation and an overnight period without food, blood glucose, cholesterol, and triglyceride postprandial responses were evaluated for 16 h after continued exposure to food. On d 20, colon biopsies of the cats were collected under general anesthesia. Fiber addition reduced food energy and nutrient digestibility. Of all the fiber sources, SF had the least dietary fiber digestibility (P < 0.05), causing the largest reduction of dietary energy digestibility (P < 0.05). The greater fermentability of BP resulted in reduced fecal DM and pH, greater fecal production [g/(cat × d); as-is], and greater fecal concentration of acetate, propionate, and lactate (P < 0.05). For most fecal variables, WB was intermediate between BP and SF, and SF was similar to the control diet except for an increased fecal DM and firmer feces production for the SF diet (P < 0.05). Postprandial evaluations indicated reduced mean glucose concentration and area under the glucose curve in cats fed the SF diet (P < 0.05). Colon mucosa thickness, crypt area, lamina propria area, goblet cell area, crypt mean size, and crypt in bifurcation did not vary among the diets. According to the fiber solubility and fermentation rates, fiber sources can induce different physiological responses in cats, reduce energy digestibility, and favor glucose metabolism (SF), or improve gut health (BP).
Many dog owners see homemade diets as a way of increasing the bond with their pets, even though they may not have the convenience of commercial diets. Modifications of ingredients, quality and proportion might change the nutritional composition of the diet, generating nutritional imbalances. The present study evaluated how dog owners use and adhere to homemade diets prescribed by veterinary nutritionists over an extended period of time. Forty-six owners of dogs fed a homemade diet for at least 6 months were selected for the present study. Owners were invited to answer questions by first reading all possible answers and then selecting the one that best indicated their opinion. The results were evaluated through descriptive statistics. Thirty-five owners (76·1 %) found that the diets are easy to prepare. Fourteen owners (30·4 %) admitted to modifying the diets, 40 % did not adequately control the amount of provided ingredients, 73·9 % did not use the recommended amounts of soyabean oil and salt, and 34·8 % did not correctly use the vitamin, mineral or amino acid supplements. Twenty-six owners (56·5 %) reported that their dogs refused to eat at least one food item. All of these alterations make the nutritional composition of the diets unpredictable and likely nutritionally imbalanced. Although homemade diets could be a useful tool for the nutritional management of dogs with certain diseases, not all owners are able to appropriately use this type of diet and adhere to it for an extended period of time and this limitation needs to be considered when recommending the use of homemade diets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.