Although it has been known for some time that estrogen exerts a profound inf luence on brain development a definitive demonstration of the role of the classical estrogen receptor (ER␣) in sexual differentiation has remained elusive. In the present study we used a sexually dimorphic population of dopaminergic neurons in the anteroventral periventricular nucleus of the hypothalamus (AVPV) to test the dependence of sexual differentiation on a functional ER␣ by comparing the number of tyrosine hydroxylase (TH)-immunoreactive neurons in the AVPV of wild-type (WT) mice with that of mice in which the ER␣ had been disrupted by homologous recombination (ERKO␣). Only a few ER␣-immunoreactive neurons were detected in the AVPV of ERKO␣ mice, and the number of TH-immunoreactive neurons was three times that of WT mice, suggesting that disruption of the ER␣ gene feminized the number of THimmunoreactive neurons. In contrast, the AVPV contains the same number of TH-immunoreactive neurons in testicular feminized male mice as in WT males, indicating that sexual differentiation of this population of neurons is not dependent on an intact androgen receptor. The number of THimmunoreactive neurons in the AVPV of female ERKO␣ mice remained higher than that of WT males, but TH staining appeared to be lower than that of WT females. Thus, the sexual differentiation of dopamine neurons in the AVPV appears to be receptor specific and dependent on the perinatal steroid environment.From an evolutionary perspective, the most adaptive physiological responses are those that ensure successful reproduction. Coordinated sex-specific behaviors and physiological mechanisms have evolved to facilitate reproduction and it is now clear that most are determined by the central action of steroid hormones during brain development. For example, only female rats display a massive surge in gonadotropin secretion in response to treatment of gonadectomized animals with estrogen and progesterone, and exposure of genetic females to high levels of gonadal hormones such as testosterone near the time of birth results in defeminization of the sexually dimorphic pattern of luteinizing hormone (LH) secretion that triggers ovulation (1-4). Abundant evidence from a variety of animal models indicates that steroid hormones secreted by the gonads during development cause profound sex-specific changes in the structure and neurochemistry of certain forebrain regions, including sexually dimorphic regions in the hypothalamus thought to play key roles in mediating the preovulatory secretion of LH (4-7). A particularly important and sexually dimorphic part of neural circuits that regulate the secretion of LH is the anteroventral periventricular nucleus of the preoptic region (AVPV). The AVPV has been shown to play a critical role in transducing hormonal feedback on LH secretion and is required for spontaneous ovulation (8, 9). Consistent with this functional role, the AVPV contains high densities of neurons that express receptors for estrogen and progesterone (10) and implan...
Rapid temporal modulation of acoustic signals among several vertebrate lineages has recently been shown to depend on the actions of superfast muscles. We hypothesized that such fast events, known to require synchronous activation of muscle fibers, would rely on motoneuronal properties adapted to generating a highly synchronous output to sonic muscles. Using intracellular in vivo recordings, we identified a suite of premotor network inputs and intrinsic motoneuronal properties synchronizing the oscillatory-like, simultaneous activation of superfast muscles at high gamma frequencies in fish. Motoneurons lacked spontaneous activity, firing synchronously only at the frequency of premotor excitatory input. Population-level motoneuronal output generated a spike-like, vocal nerve volley that directly determines muscle contraction rate and, in turn, natural call frequency. In the absence of vocal output, motoneurons showed low excitability and a weak afterhyperpolarization, leading to rapid accommodation in firing rate. By contrast, vocal activity was accompanied by a prominent afterhyperpolarization, indicating a dependency on network activity. Local injection of a GABA(A) receptor antagonist demonstrated the necessity of electrophysiologically and immunohistochemically confirmed inhibitory GABAergic input for motoneuronal synchrony and vocalization. Numerous transneuronally labeled motoneurons following single-cell neurobiotin injection together with electrophysiological collision experiments confirmed gap junctional coupling, known to contribute to synchronous activity in other neural networks. Motoneuronal synchrony at the premotor input frequency was maintained during differential recruitment of variably sized motoneurons. Differential motoneuron recruitment led, however, to amplitude modulation (AM) of vocal output and, hence, natural call AM. In summary, motoneuronal intrinsic properties, in particular low excitability, predisposed vocal motoneurons to the synchronizing influences of premotor inputs to translate a temporal input code into a coincident and extremely synchronous, but variable-amplitude, output code. We propose an analogous suite of neuronal properties as a key innovation underlying similarly rapid acoustic events observed among amphibians, reptiles, birds, and mammals.
The anteroventral periventricular nucleus (AVPV) is a nodal point in neural circuits regulating secretion of gonadotropin and contains sexually dimorphic populations of hormonally regulated dopamine-, dynorphin-, and enkephalin-containing neurons. Because the tyrosine hydroxylase (TH), prodynorphin (PDYN), and proenkephalin (PENK) genes contain cAMP response elements that control their expression in their promoters, we used histochemical methods to determine whether ovarian steroids alter expression of the cAMP response element-binding protein (CREB) in the AVPV. Because the ability of CREB to activate transcription depends on phosphorylation at Ser133, we also evaluated the effects of acute steroid treatment on levels of phosphorylated CREB (pCREB) in AVPV neurons by using an antibody that differentiates between CREB and pCREB. Treatment of ovariectomized rats with estradiol treatments caused a significant induction in the number of pCREB-immunoreactive nuclei within 30 min that was maintained for at least 4 hr, but did not alter CREB immunostaining in the AVPV. Pretreatment with the estrogen antagonist Nafoxidine blocked this induction. In contrast, acute administration of progesterone to estrogen-primed animals suppressed and then increased pCREB staining in the ASVPV at 30 and 60 min, respectively; no significant differences between experimental and control animals were apparent by 2 hr after progesterone treatment. Double-labeling experiments showed that pCREB was colocalized with PDYN, PENK, or TH mRNA in the AVPV, suggesting that pCREB may mediate the effect of steroid hormones on gene expression in these neurons.
The anteroventral periventricular nucleus of the preoptic region (AVPV) represents a key site for hormonal feedback on gonadotropin secretion. It plays a critical role in the neural control of luteinizing hormone secretion and contains high densities of neurons that express receptors for estrogen and progesterone. In this study in situ hybridization was used to examine the expression of mRNAs encoding the estrogen (ER) and progesterone (PR) receptors in the AVPV during the estrous cycle. ER gene expression fluctuated during the cycle with the lowest levels of ER mRNA observed in animals killed on the afternoon of proestrus, and the highest levels present in animals killed during metestrus. This apparent inverse relationship between circulating levels of estradiol (E2) and ER mRNA levels in AVPV neurons was supported by the observation that treatment of ovariectomized rats with E2 suppressed expression of ER mRNA in the AVPV. The influence of progesterone (P4) on ER expression was less pronounced, but a significant increase in ER mRNA in the AVPV was detected 3 h after treatment with P4. In contrast, PR mRNA levels were highest in the AVPV during diestrus and lowest on the morning of proestrus suggesting that PR expression in the AVPV is regulated in a complex manner that may reflect the combined regulatory effects of E2 and P4. E2 treatment caused a dramatic induction of PR mRNA in the AVPV, but P4 did not affect PR mRNA expression acutely, although PR mRNA appears to be attenuated in the AVPV 27 h after P4 treatment. These findings suggest that ovarian steroid hormones regulate ER and PR gene expression in the AVPV during the estrous cycle, which may represent molecular events that contribute to cyclic changes in the responsiveness of AVPV neurons to steroid hormones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.