Spontaneous recognition tasks are widely used as a laboratory measure of memory in animals but give rise to high levels of behavioral noise leading to a lack of reliability. Previous work has shown that a modification of the procedure to allow continual trials testing (in which many trials are run concurrently in a single session) decreases behavioral noise and thus significantly reduces the numbers of rats required to retain statistical power. Here, we demonstrate for the first time that this improved method of testing extends to mice, increasing the overall power of the approach. Moreover, our results show that the new continual trials approach provides the additional benefits of heightened sensitivity and thus provides greater insight into the mechanisms at play. Standard (c57) and transgenic Alzheimer model (TASTPM) mice were tested both at 7 and 10 months of age in both object recognition (OR) and object-location (OL) spontaneous recognition tasks using the continual trials methodology. Both c57 and TASTPM mice showed age-dependent changes in performance in OR. While c57 mice also showed age-related changes in performance of OL, TASTPM mice were unable to perform OL at either age. Significantly, we demonstrate that differences in OL performance in c57s and TASTPM animals is a result of proactive interference rather than an absolute inability to recognize OL combinations. We argue that these continual trials approaches provide overall improved reliability and better interpretation of the memory ability of mice, as well as providing a significant reduction in overall animal use.
Highlights
The role of NMDA receptors in encoding of object memory was assessed.
A retention interval of 24 h was used.
When state-dependency was controlled MK-801 failed to impair memory.
Votucalis is a biologically active protein in tick (R. appendiculatus) saliva, which specifically binds histamine with high affinity and, therefore, has the potential to inhibit the host’s immunological responses at the feeding site. We hypothesized that scavenging of peripherally released endogenous histamine by Votucalis results in both anti-itch and anti-nociceptive effects. To test this hypothesis, adult male mice were subjected to histaminergic itch, as well as peripheral nerve injury that resulted in neuropathic pain. Thus, we selected models where peripherally released histamine was shown to be a key regulator. In these models, the animals received systemic (intraperitoneal, i.p.) or peripheral transdermal (subcutaneous, s.c. or intraplantar, i.pl.) administrations of Votucalis and itch behavior, as well as mechanical and thermal hypersensitivity, were evaluated. Selective histamine receptor antagonists were used to determine the involvement of histamine receptors in the effects produced by Votucalis. We also used the spontaneous object recognition test to confirm the centrally sparing properties of Votucalis. Our main finding shows that in histamine-dependent itch and neuropathic pain models peripheral (s.c. or i.pl.) administration of Votucalis displayed a longer duration of action for a lower dose range, when compared with Votucalis systemic (i.p.) effects. Stronger anti-itch effect was observed after co-administration of Votucalis (s.c.) and antagonists that inhibited peripheral histamine H1 and H2 receptors as well as central histamine H4 receptors indicating the importance of these histamine receptors in itch. In neuropathic mice, Votucalis produced a potent and complete anti-nociceptive effect on mechanical hypersensitivity, while thermal (heat) hypersensitivity was largely unaffected. Overall, our findings further emphasize the key role for histamine in the regulation of histaminergic itch and chronic neuropathic pain. Given the effectiveness of Votucalis after peripheral transdermal administration, with a lack of central effects, we provide here the first evidence that scavenging of peripherally released histamine by Votucalis may represent a novel therapeutically effective and safe long-term strategy for the management of these refractory health conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.