Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
Biliary fistulas are rare complications of gallstone. They can affect either the biliary or the gastrointestinal tract and are usually classified as primary or secondary. The primary fistulas are related to the biliary lithiasis, while the secondary ones are related to surgical complications. Laparoscopic surgery is a therapeutic option for the treatment of primary biliary fistulas. However, it could be the first responsible for the development of secondary biliary fistulas. An accurate preoperative diagnosis together with an experienced surgeon on the hepatobiliary surgery is necessary to deal with biliary fistulas. Cholecystectomy with a choledocoplasty is the most frequent treatment of primary fistulas, whereas the bile duct drainage or the endoscopic stenting is the best choice in case of minor iatrogenic bile duct injuries. Roux-en-Y hepaticojejunostomy is the extreme therapeutic option for both conditions. The sepsis, the level of the bile duct damage, and the involvement of the gastrointestinal tract increase the complexity of the operation and affect early and late results.
Background Laparoscopic cholecystectomy is considered the gold standard for the treatment of gallbladder lithiasis; nevertheless, the incidence of bile duct injuries (BDI) is still high (0.3-0.8%) compared to open cholecystectomy (0.2%). In 1995, Strasberg introduced the "Critical View of Safety" (CVS) to reduce the risk of BDI. Despite its widespread use, the scientific evidence supporting this technique to prevent BDI is controversial. Methods Between March 2017 and March 2019, the data of patients submitted to laparoscopic cholecystectomy in 30 Italian surgical departments were collected on a national database. A survey was submitted to all members of Italian Digestive Pathology Society to obtain data on the preoperative workup, the surgical and postoperative management of patients and to judge, at the end of the procedure, if the isolation of the elements was performed according to the CVS. In the case of a declared critical view, iconographic documentation was obtained, finally reviewed by an external auditor. Results Data from 604 patients were analysed. The study population was divided into two groups according to the evidence (Group A; n = 11) or absence (Group B; N = 593) of BDI and perioperative bleeding. The non-use of CVS was found in 54.6% of procedures in the Group A, and 25.8% in the Group B, and evaluating the operator-related variables the execution of CVS was associated with a significantly lower incidence of BDI and intraoperative bleeding. Conclusions The CVS confirmed to be the safest technique to recognize the elements of the Calot triangle and, if correctly performed, it significantly impacted on preventing intraoperative complications. Additional educational programs on the correct application of CVS in clinical practice would be desirable to avoid extreme conditions that may require additional procedures. Keywords Cholecystectomy • Critical view of safety • Laparoscopy • Bile duct injuries • Intraoperative bleeding • Laparoscopic training Laparoscopic cholecystectomy (LC) is currently and worldwide considered the gold standard for the treatment of gallbladder lithiasis. Since its introduction, in the early 1990s, this procedure has gained a remarkable consensus until becoming a routine surgical procedure. LC is characterized by a reduction in postoperative pain, hospital stay, and recovery times to normal daily activities, which translates into reduced costs for the national healthcare systems (NHS) [1]. However, this procedure comes with an increased incidence of bile duct injuries (BDI), compared to open cholecystectomy (OC): 0.3% and 0.8% vs 0.2% [2-7]. LC-related BDIs include minor injuries up to complex hilar injuries, as classified by Strasberg et al., in which the and Other Interventional Techniques
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.