We study the statistics area, bounce and dinv on the set of parallelogram polyominoes having a rectangular m times n bounding box. We show that the bi-statistics (area, bounce) and (area, dinv) give rise to the same q, t-analogue of Narayana numbers which was introduced by two of the authors in [4]. We prove the main conjectures of that paper: the q, t-Narayana polynomials are symmetric in both q and t, and m and n. This is accomplished by providing a symmetric functions interpretation of the q, t-Narayana polynomials which relates them to the famous diagonal harmonics.
We introduce the notion of an arithmetic matroid, whose main example is given by a list of elements of a finitely generated abelian group. In particular, we study the representability of its dual, providing an extension of the Gale duality to this setting.Guided by the geometry of generalized toric arrangements, we provide a combinatorial interpretation of the associated arithmetic Tutte polynomial, which can be seen as a generalization of Crapo's formula for the classical Tutte polynomial. * supported by the
Abstract. We introduce two operators on stable configurations of the sandpile model that provide an algorithmic bijection between recurrent and parking configurations. This bijection preserves their equivalence classes with respect to the sandpile group. The study of these operators in the special case of the complete bipartite graph Km,n naturally leads to a generalization of the well known Cyclic Lemma of Dvoretsky and Motzkin, via pairs of periodic bi-infinite paths in the plane having slightly different slopes. We achieve our results by interpreting the action of these operators as an action on a point in the grid Z 2 which is pointed to by one of these pairs of paths. Our Cyclic lemma allows us to enumerate several classes of polyominoes, and therefore builds on the work of Irving and Rattan (2009), Chapman et al. (2009), and Bonin et al. (2003.
We give an explicit presentation for the integral cohomology ring of the complement of any arrangement of level sets of characters in a complex torus (alias "toric arrangement"). Our description parallels the one given by Orlik and Solomon for arrangements of hyperplanes, and builds on De Concini and Procesi's work on the rational cohomology of unimodular toric arrangements. As a byproduct we extend Dupont's rational formality result to formality over Z.The data needed in order to state the presentation is fully encoded in the poset of connected components of intersections of the arrangement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.