The estuarine crab Neohelice granulata was maintained under control condition or exposed to sublethal concentrations of dissolved Ni (measured: 128 and 1010μg/L) for 96h at different salinities (2 and 30ppt). After metal exposure, whole-body oxygen consumption was measured and tissue (hemolymph, gills, hepatopancreas and muscle) samples were collected. Control crabs acclimated to 2ppt salinity showed lower hemolymph concentrations of Na (33%), Mg (19%) and K (30%), as well as increased LPO levels in anterior gills (379%), posterior gills (457%) and hepatopancreas (35%) with respect to those acclimated to 30ppt salinity. In crabs acclimated to 2ppt salinity, Ni exposure increased whole-body oxygen consumption (75%), hemolymph K concentration (52%), hemolymph (135%) and hepatopancreas (62%) LDH activity. Also, it reduced hemolymph Cl concentration (16%) and muscle LDH activity (33%). In crabs acclimated to 30ppt salinity, Ni exposure increased LDH activity in hemolymph (195%), hepatopancreas (126%) and muscle (53%), as well as hemolymph osmolality (10%), Cl (26%) and Ca (20%) concentration. It also reduced hepatopancreas lipid peroxidation (20%) and hemolymph Mg (29%) and K (31%) concentration. These findings indicate that N. granulata is hyper-osmoregulating in 2ppt salinity and hypo-regulating in 30ppt salinity, showing adjustments of hemolymph ionic composition and metabolic rates, with consequent higher oxidative damage to lipids in low salinity (2ppt). Ni effects are associated with metabolic (aerobic and anaerobic) disturbances in crabs acclimated to 2ppt salinity, while osmotic and ionoregulatory disturbances were more evident in crabs acclimated to 30ppt salinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.