The essential oils of the leaves of Eugenia brasiliensis, Eugenia beaurepaireana, and Eugenia umbelliflora were analyzed by GC-MS. The major compounds found in the oil of E. brasiliensis were spathulenol (12.6%) and tau-cadinol (8.7%), of E. beaurepaireana were beta-caryophyllene (8.0%) and bicyclogermacrene (7.2%), and of E. umbelliflora were viridiflorol (17.7%) and beta-pinene (13.2%). These oils were assayed to determine their antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. All of the oils analyzed showed antibacterial activity, ranging from moderate to strong, which was most accentuated for the E. umbelliflora and E. brasiliensis oils, which strongly inhibited the growth of S. aureus giving values of MIC = 119.2 and 156.2 microg/mL, respectively.
Alzheimer's disease and diabetes mellitus are contemporary diseases of great concern. Phenolic compounds are linked to several health benefits and could lead to novel strategies to combat these ailments. The objective of this study was to evaluate by electrophoretically-mediated microanalysis the potential inhibitory activity of the fruit juices from Plinia cauliflora ("jaboticaba") and Eugenia uniflora ("pitanga") toward acetylcholinesterase (AChE) and α-glucosidase, target enzymes in strategies for the treatment of these diseases. The phenolic profiles of the samples were also investigated. Jaboticaba and pitanga juices
Eugenia brasiliensis Lam., a plant from the south of Brazil, is used in the popular medicine for rheumatism treatment. This study reports that topical application of hydroalcoholic extract, fractions and isolated compounds from E. brasiliensis caused an inhibition of ear oedema in response to topical application of croton oil on the mouse ear. For oedema inhibition, the estimated ID50 values (dose reducing the inflammatory response by 50% relative to the control value) for hydroalcoholic extract and fractions (hexane, ethyl acetate and dichloromethane) were 0.17, 0.29, 0.13 and 0.14 mg/ear, respectively, with inhibition of 79+/-7%, 87+/-6%, 88+/-5% and 96+/-2%, respectively. Isolated phenolic compounds (quercetin, catechin and gallocatechin) were also effective in inhibiting the oedema (inhibition of 61+/-5%, 66+/-2% and 37+/-9%, respectively). Moreover, both extract and isolated compounds caused inhibition of polymorphonuclear cells influx (inhibition of 85+/-6%, 81+/-5%, 73+/-6% and 76+/-6%, respectively). The histological analysis of the ear tissue clearly confirmed that the extract and compounds of E. brasiliensis inhibited the influx of polymorphonuclear cells to mouse ear skin after application of croton oil. Furthermore, hydroalcoholic extract was also effective in inhibiting the arachidonic acid-mediated mouse ear oedema (ID50 value was 1.94 mg/ear and inhibition of 60+/-7%). Therefore, these results consistently support the notion that E. brasiliensis possesses topical anti-inflammatory activity.
This study describes the seasonal composition and the antibacterial, antioxidant and anticholinesterase activity of the essential oil from Eugenia brasiliensis leaves. Analysis by using GC allowed the identification of 40 compounds. It was observed that the monoterpenes varied more (42%) than the sesquiterpenes (14%), and that the monoterpene hydrocarbons suffered the greatest variation throughout the year (64%). Major compounds were spathulenol in the spring (16.02 ± 0.44%) and summer (18.17 ± 0.41%), τ-cadinol in the autumn (12.83 ± 0.03%) and α-pinene (15.94 ± 0.58%) in the winter. Essential oils were tested for their antibacterial activity, and the best result was obtained from the autumn oil, with MIC = 500 μg mL(- 1) against Staphylococcus saprophyticus and Pseudomonas aeruginosa. Antioxidant activity was evaluated using DPPH, lipid peroxidation and iron-reducing power assays, as well as the anticholinesterase activity. Both tests showed a weak performance of the essential oils.
Regions with a tropical climate are frequently affected by endemic diseases caused by pathogenic parasites. More than one billion people worldwide are exposed directly to tropical parasites. The literature cites several antiparasitic metabolites obtained from medicinal plants or via synthetic pathways. However, fungi produce a diversity of metabolites that play important biological roles in human well-being. Thus, they are considered a potential source of novel natural agents for exploitation in the pharmaceutical industry. In this brief review article, we will provide an overview of the current situation regarding antiparasitic molecules derived from filamentous fungi, in particular, those which are effective against protozoan parasites, such as Plasmodium, Trypanosoma, and Leishmania, vectors of some neglected tropical diseases. Diseases and parasitic agents are described and classified, and the antiparasitic properties of natural compounds produced by the fungi of the phyla Basidiomycota and Ascomycota are reviewed herein, in order to explore a topic only sparsely addressed in the scientific literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.