The atom-optics kicked rotor can be used to prepare specific momentum distributions on a discrete basis set. We implement a continuous-time quantum walk and a quantum search protocol in this momentum basis. In particular we propose ways to identify a specific marked state from the final momentum distribution after the walker's evolution. Our protocol is guided by current experimental possibilities making it accessible to experimentally implemented quantum walks with Bose-Einstein condensates.
We analytically investigate the analogy between a standard continuous-time quantum walk in one dimension and the evolution of the quantum kicked rotor at quantum resonance conditions. We verify that the obtained probability distributions are equal for a suitable choice of the kick strength of the rotor. We further discuss how to engineer the evolution of the walk for dynamically preparing experimentally relevant states. These states are important for future applications of the atom-optics kicked rotor for the realization of ratchets and quantum search.
We study the robustness of different sweep protocols for accelerated adiabaticity following in the presence of static errors and of dissipative and dephasing phenomena. While in the noise-free case, counterdiabatic driving is, by definition, insensitive to the form of the original sweep function, this property may be lost when the quantum system is open. We indeed observe that, according to the decay and dephasing channels investigated here, the performance of the system becomes highly dependent on the sweep function. Our findings are relevant for the experimental implementation of robust shortcuts-to-adiabaticity techniques for the control of quantum systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.