This paper describes the contents of the new Hydrogeological Map of the City of Rome (1:50,000 scale). The map extends to the entire municipality (1285 km 2 ) and is based on both the most recent scientific studies on the groundwater field and new survey activities carried out in order to fill the data gaps in several areas of the examined territory. The map is the result of a combination of different urban groundwater expertise and Geographic Information System (GIS)-based mapping performed using the most recent available data and has been produced with the intention of furnishing the City of Rome with the most recent and updated information regarding groundwater. ARTICLE HISTORY
In this paper the hydrogeological setting of Rome is ἀgured out. This setting has been strongly inḀuenced by different factors as tectonic activity, volcanism and seal level variations. The conceptual model of the groundwater Ḁow in the roman area is represented by four aquifers, three of which being overlappingones. These aquifers Ḁow from peripheral sectors of the study area toward Tiber and Aniene Rivers and the Se
This study presents the results of a research project financed by the Lazio Regional Government. The research focused on defining an integrated model of recent alluvial deposits in the Tiber River. To achieve this objective, geological boreholes were made to monitor the aquifer and in situ and laboratory tests carried out. The data obtained was used to detail stratigraphic aspects and improve the comprehension of water circulation beneath the recent alluvial deposits of the Tiber River in the urban area of Rome, between the Ponte Milvio bridge and the Tiber Island. The stratigraphic intervals recognised in the boreholes were parameterised based on their litho-technical characteristics. The new data acquired, and integrated with existing data in the CNR IGAG database, made it possible to produce a three-dimensional model of the lithologies in the study area.The model of the subsoil, simplified for applied reasons, was described in hy-drostratigraphic terms: three different lithotypes were subjected to piezometric levels monitor-ing. Finally, the research generated a numerical hydrological level in a stationary regime. In general, this study demonstrates how a numerical hydrogeological model calibrated by piezo-metric monitoring data can support the construction of a geological model, discarding or con-firming certain hypotheses and suggesting other means of reconstructing sedimentary bodies.
Sustainable use of groundwater in the hydrothermal area of Viterbo (Central Italy) was analyzed. In this area, multipurposes utilization of groundwater coexists: several thermal springs and wells supply spas and public pools, cold and fresh water is used for irrigation and drinking‐water. Starting from theoretical concepts, a management plan has been developed to ensure groundwater sustainability in response to the increased demand of withdrawal from thermal wells, by integrating previous hydrogeological studies, new investigations and a new finite‐difference model. The most stringent constraints considered are: to maintain the quality of thermal and fresh waters, to limit the effects on the hydraulic equilibrium existing between overlapping aquifers, to ensure a significant flow to the natural thermal springs and the quality and flow rate of the spring used for drinking purposes. The practical approach included identification of the maximum pumping rate from the wells of the spas, analysis of the response time of the system under development and drafting of a safeguard and monitoring plan. The case examined takes into account the complexity of the task in defining practical measures for groundwater management on the basis of theoretical concepts of its sustainable use. A participative approach among the different water decision‐makers and adaptive management in the use of groundwater resources with different quality represent the key points to overcome conflicts between different users, with the awareness of the ineludible uncertainties of the hydrogeological model.
This study presents the results of a research project financed by the Lazio Regional Government. The research focused on defining an integrated model of recent alluvial deposits in the Tiber River. To achieve this objective, geological boreholes were made to monitor the aquifer and in situ and laboratory tests were carried out. The data obtained were used to detail stratigraphic aspects and improve the comprehension of water circulation beneath the recent alluvial deposits of the Tiber River in the urban area of Rome, between the Ponte Milvio bridge and the Tiber Island. The stratigraphic intervals recognised in the boreholes were parameterised based on their litho-technical characteristics. The new data acquired, and integrated with existing data in the database of Institute of Environmental Geology and Geoengineering of the Italian National Research Council, made it possible to produce a three-dimensional model of the lithologies in the study area. The model of the subsoil, simplified for applied reasons, was described in hydrostratigraphic terms: three different lithotypes were subjected to piezometric levels monitoring. Finally, the research generated a numerical hydrological model in a steady state. In general, this study demonstrates how a numerical hydrogeological model calibrated by piezometric monitoring data can support the construction of a geological model, discarding or confirming certain hypotheses and suggesting other means of reconstructing sedimentary bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.