Research on social-media platforms has tended to rely on textual analysis to perform research tasks. While text-based approaches have significantly increased our understanding of online behavior and social dynamics, they overlook features on these platforms that have grown in prominence in the past few years: click-based responses to content. In this paper, we present a new dataset of Facebook Reactions to scholarly content. We give an overview of its structure, analyze some of the statistical trends in the data, and use it to train and test two supervised learning algorithms. Our preliminary tests suggest the presence of stratification in the number of users following pages, divisions that seem to fall in line with distinctions in the subject matter of those pages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.