Abstract. We show that it is possible to achieve perfect forward secrecy in two-message or one-round key exchange (KE) protocols that satisfy even stronger security properties than provided by the extended Canetti-Krawczyk (eCK) security model. In particular, we consider perfect forward secrecy in the presence of adversaries that can reveal ephemeral secret keys and the long-term secret keys of the actor of a session (similar to Key Compromise Impersonation). We propose two new game-based security models for KE protocols. First, we formalize a slightly stronger variant of the eCK security model that we call eCK w . Second, we integrate perfect forward secrecy into eCK w , which gives rise to the even stronger eCK-PFS model. We propose a security-strengthening transformation (i. e., a compiler ) between our new models. Given a two-message Diffie-Hellman type protocol secure in eCK w , our transformation yields a two-message protocol that is secure in eCK-PFS. As an example, we show how our transformation can be applied to the NAXOS protocol.
Abstract. We show that it is possible to achieve perfect forward secrecy in two-message or one-round key exchange (KE) protocols that satisfy even stronger security properties than provided by the extended Canetti-Krawczyk (eCK) security model. In particular, we consider perfect forward secrecy in the presence of adversaries that can reveal ephemeral secret keys and the long-term secret keys of the actor of a session (similar to Key Compromise Impersonation). We propose two new game-based security models for KE protocols. First, we formalize a slightly stronger variant of the eCK security model that we call eCK w . Second, we integrate perfect forward secrecy into eCK w , which gives rise to the even stronger eCK-PFS model. We propose a security-strengthening transformation (i. e., a compiler ) between our new models. Given a two-message Diffie-Hellman type protocol secure in eCK w , our transformation yields a two-message protocol that is secure in eCK-PFS. As an example, we show how our transformation can be applied to the NAXOS protocol.
Abstract. Most security models for authenticated key exchange (AKE) do not explicitly model the associated certification system, which includes the certification authority (CA) and its behaviour. However, there are several well-known and realistic attacks on AKE protocols which exploit various forms of malicious key registration and which therefore lie outside the scope of these models. We provide the first systematic analysis of AKE security incorporating certification systems (ASICS). We define a family of security models that, in addition to allowing different sets of standard AKE adversary queries, also permit the adversary to register arbitrary bitstrings as keys. For this model family we prove generic results that enable the design and verification of protocols that achieve security even if some keys have been produced maliciously. Our approach is applicable to a wide range of models and protocols; as a concrete illustration of its power, we apply it to the CMQV protocol in the natural strengthening of the eCK model to the ASICS setting.
Recent history has revealed that many random number generators (RNGs) used in cryptographic algorithms and protocols were not providing appropriate randomness, either by accident or on purpose. Subsequently, researchers have proposed new algorithms and protocols that are less dependent on the random number generator. One exception is that all prominent authenticated key exchange (AKE) protocols are insecure given bad randomness, even when using good long-term keying material.We analyse the security of AKE protocols in the presence of adversaries that can perform attacks based on chosen randomness, i. e., attacks in which the adversary controls the randomness used in protocol sessions. We propose novel stateful protocols, which modify memory shared among a user's sessions, and show in what sense they are secure against this worst case randomness failure. We develop a stronger security notion for AKE protocols that captures the security that we can achieve under such failures, and prove that our main protocol is correct in this model. Our protocols make substantially weaker assumptions on the RNG than existing protocols.
Most security models for authenticated key exchange (AKE) do not explicitly model the associated certification system, which includes the certification authority (CA) and its behaviour. However, there are several well-known and realistic attacks on AKE protocols which exploit various forms of malicious key registration and which therefore lie outside the scope of these models. We provide the first systematic analysis of AKE security incorporating certification systems (ASICS). We define a family of security models that, in addition to allowing different sets of standard AKE adversary queries, also permit the adversary to register arbitrary bitstrings as keys. For this model family we prove generic results that enable the design and verification of protocols that achieve security even if some keys have been produced maliciously. Our approach is applicable to a wide range of models and protocols; as a concrete illustration of its power, we apply it to the CMQV protocol in the natural strengthening of the eCK model to the ASICS setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.