We investigate the dynamical charge response of the Anderson model viewed as a quantum RC circuit. Applying a low-energy effective Fermi liquid theory, a generalized Korringa-Shiba formula is derived at zero temperature, and the charge relaxation resistance is expressed solely in terms of static susceptibilities which are accessible by Bethe ansatz. We identify a giant charge relaxation resistance at intermediate magnetic fields related to the destruction of the Kondo singlet. The scaling properties of this peak are computed analytically in the Kondo regime. We also show that the resistance peak fades away at the particle-hole symmetric point.
We numerically investigate the distribution of Drude weights $D$ of many-body states in disordered one-dimensional interacting electron systems across the transition to a many-body localized phase. Drude weights are proportional to the spectral curvatures induced by magnetic fluxes in mesoscopic rings. They offer a method to relate the transition to the many-body localized phase to transport properties. In the delocalized regime, we find that the Drude weight distribution at a fixed disorder configuration agrees well with the random-matrix-theory prediction $P(D) \propto (\gamma^2+D^2)^{-3/2}$, although the distribution width $\gamma$ strongly fluctuates between disorder realizations. A crossover is observed towards a distribution with different large-$D$ asymptotics deep in the many-body localized phase, which however differs from the commonly expected Cauchy distribution. We show that the average distribution width $\langle \gamma\rangle $, rescaled by $L\Delta$, $\Delta$ being the average level spacing in the middle of the spectrum and $L$ the systems size, is an efficient probe of the many-body localization transition, as it increases/vanishes exponentially in the delocalized/localized phase.Comment: 5 pages, 3 figures + 1 page Supplemental Material, 2 figure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.