We establish a connection between the theory of Lyapunov exponents and the properties of expansivity and sensitivity to initial conditions for a particular class of discrete time dynamical systems; cellular automata (CA). The main contribution of this paper is the proof that all expansive cellular automata have positive Lyapunov exponents for almost all the phase space configurations. In addition, we provide an elementary proof of the non-existence of expansive CA in any dimension greater than 1. In the second part of this paper we prove that expansivity in dimension greater than 1 can be recovered by restricting the phase space to a suitable subset of the whole space. To this extent we describe a 2-dimensional CA which is expansive over a dense uncountable subset of the whole phase space. Finally, we highlight the different behavior of expansive and sensitive CA for what concerns the speed at which perturbations propagate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.