Magnetic particle imaging (MPI) is an emerging biomedical imaging technology that allows the direct quantitative mapping of the spatial distribution of superparamagnetic iron oxide nanoparticles. MPI's increased sensitivity and short image acquisition times foster the creation of tomographic images with high temporal and spatial resolution. The contrast and sensitivity of MPI is envisioned to transcend those of other medical imaging modalities presently used, such as magnetic resonance imaging (MRI), X-ray scans, ultrasound, computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this review, we present an overview of the recent advances in the rapidly developing field of MPI. We begin with a basic introduction of the fundamentals of MPI, followed by some highlights over the past decade of the evolution of strategies and approaches used to improve this new imaging technique. We also examine the optimization of iron oxide nanoparticle tracers used for imaging, underscoring the importance of size homogeneity and surface engineering. Finally, we present some future research directions for MPI, emphasizing the novel and exciting opportunities that it offers as an important tool for real-time in vivo monitoring. All these opportunities and capabilities that MPI presents are now seen as potential breakthrough innovations in timely disease diagnosis, implant monitoring, and image-guided therapeutics.
Metal-oxo clusters have been used as building blocks to form hybrid nanomaterials and evaluated as potential MRI contrast agents. We have synthesized a biocompatible copolymer based on a water stable, nontoxic, mixed-metal-oxo cluster, Mn8Fe4O12(L)16(H2O)4, where L is acetate or vinyl benzoic acid, and styrene. The cluster alone was screened by NMR for relaxivity and was found to be a promising T2 contrast agent, with r1 = 2.3 mM(-1) s(-1) and r2 = 29.5 mM(-1) s(-1). Initial cell studies on two human prostate cancer cell lines, DU-145 and LNCap, reveal that the cluster has low cytotoxicity and may be potentially used in vivo. The metal-oxo cluster Mn8Fe4(VBA)16 (VBA = vinyl benzoic acid) can be copolymerized with styrene under miniemulsion conditions. Miniemulsion allows for the formation of nanometer-sized paramagnetic beads (~80 nm diameter), which were also evaluated as a contrast agent for MRI. These highly monodispersed, hybrid nanoparticles have enhanced properties, with the option for surface functionalization, making them a promising tool for biomedicine. Interestingly, both relaxivity measurements and MRI studies show that embedding the Mn8Fe4 core within a polymer matrix decreases r2 effects with little effect on r1, resulting in a positive T1 contrast enhancement.
The syntheses, structures, and luminescence properties of a series of copper(I) halide coordination polymers, prepared with mono- and bidentate N-heteroaromatic ligands, are reported. These metal-organic coordination networks form [CuIL] for bidentate ligands (where L = pyrazine (1), quinazoline (2)) and [CuIL] for monodentate ligands (where L = 3-benzoylpyridine (3) and 4-benzoylpyridine(4)). Both sets of compounds exhibit a double-stranded stair-CuI-polymer, or "ladder" structure with the ligand coordinating to the metal in a bidentate (bridging two stairs) or monodentate mode. The copper bromide analogues for the bidentate ligands were also targeted, [CuBrL] for L = pyrazine (5) with the same stair structure, as well as compositions of [CuBr(L)] for L = pyrazine (6) and quinazoline (7), which have a different structure type, where the -Cu-Br- forms a single-stranded "zigzag" chain. These copper halide polymers were found to be luminescent at room temperature, with emission peaks ranging from ∼550 to 680 nm with small shifts at low temperature. The structure (stair or chain), the halide (I or Br), as well as the ligand play an important role in determining the position and intensity of emission. Lifetime measurements at room and low temperatures confirm the presence of thermally activated delayed fluorescence, or singlet harvesting for compounds 1, 2, and 7. We also investigated the nonlinear optical properties and found that, of this series, [CuBr(quinazoline)] shows a very strong second harmonic generating response that is ∼150 times greater than that of α-SiO.
There is an increasing need for gadolinium-free magnetic resonance imaging (MRI) contrast agents, particularly for patients suffering from chronic kidney disease. Using a cluster−nanocarrier combination, we have identified a novel approach to the design of biomedical nanomaterials and report here the criteria for the cluster and the nanocarrier and the advantages of this combination. We have investigated the relaxivity of the following manganese oxo clusters: the parent cluster Mn 3 (O 2 CCH 3 ) 6 (Bpy) 2 (1) where Bpy = 2,2′-bipyridine and three new analogs, Mn 3 (O 2 CC 6 H 4 CHCH 2 ) 6 (Bpy) 2 (2), Mn 3 (O 2 CC(CH 3 )CH 2 ) 6 (Bpy) 2 (3), and Mn 3 O(O 2 CCH 3 ) 6 (Pyr) 2 (4) where Pyr = pyridine. The parent cluster, Mn 3 (O 2 CCH 3 ) 6 (Bpy) 2 (1), had impressive relaxivity (r 1 = 6.9 mM −1 s −1 , r 2 = 125 mM −1 s −1 ) and was found to be the most amenable for the synthesis of cluster-nanocarrier nanobeads. Using the inverse miniemulsion polymerization technique (1) in combination with the hydrophilic monomer acrylamide, we synthesized nanobeads (∼125 nm diameter) with homogeneously dispersed clusters within the polyacrylamide matrix (termed Mn 3 Bpy-PAm). The nanobeads were surfacemodified by co-polymerization with an amine-functionalized monomer. This enabled various postsynthetic modifications, for example, to attach a near-IR dye, Cyanine7, as well as a targeting agent. When evaluated as a potential multimodal MRI contrast agent, high relaxivity and contrast were observed with r 1 = 54.4 mM −1 s −1 and r 2 = 144 mM −1 s −1 , surpassing T 1 relaxivity of clinically used Gd-DTPA chelates as well as comparable T 2 relaxivity to iron oxide microspheres. Physicochemical properties, cellular uptake, and impacts on cell viability were also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.