SummaryAlthough double fertilization in angiosperm was discovered in 1898, we still know nothing about the proteins that mediate gamete recognition and fusion in plants. Because sperm are small and embedded within the large vegetative cell of the pollen grain, mRNAs from sperm are poorly represented in EST databases. We optimized¯uorescence-activated cell sorting (FACS) in order to isolate Zea mays sperm free of contaminating vegetative cell cytoplasm, and constructed a cDNA library. Sequencing of over 1100 cDNAs from the unampli®ed library revealed that sperm have a diverse complement of mRNAs. Most transcripts were singletons; the most abundant was sequenced only 17 times. About 8% of the sequences are predicted to encode secreted or plasma membrane-localized proteins and are therefore candidates that might mediate gamete interactions. About 8% of the sequences correspond to retroposons. Plant sperm have condensed chromatin and are thought to be transcriptionally inactive. We used RT-PCR and in situ hybridization to determine when selected sperm mRNAs were transcribed. Sperm transcripts encoding proteins involved in general cell functions were present throughout pollen development and were more abundant in tricellular pollen than in sperm cells, suggesting that these transcripts were also present in the larger vegetative cell. However, several transcripts, which encode proteins that are most similar to hypothetical Arabidopsis proteins, appeared to be present exclusively in the sperm cells inside mature pollen, but were already present in unicellular microspores. This suggests that certain transcripts might be transcribed early during pollen development and later partitioned into the sperm cells.
Previously, in an effort to better understand the male contribution to fertilization, we completed a maize (Zea mays) sperm expressed sequence tag project. Here, we used this resource to identify promoters that would direct gene expression in sperm cells. We used reverse transcription-polymerase chain reaction to identify probable sperm-specific transcripts in maize and then identified their best sequence matches in the Arabidopsis (Arabidopsis thaliana) genome. We tested five different Arabidopsis promoters for cell specificity, using an enhanced green fluorescent protein reporter gene. In pollen, the AtGEX1 (At5g55490) promoter is active in the sperm cells and not in the progenitor generative cell or in the vegetative cell, but it is also active in ovules, roots, and guard cells. The AtGEX2 (At5g49150) promoter is active only in the sperm cells and in the progenitor generative cell, but not in the vegetative cell or in other tissues. A third promoter, AtVEX1 (At5g62580), was active in the vegetative cell during the later stages of pollen development; the other promoters tested (At1g66770 and At1g73350) did not function in pollen. Comparisons among GEX1 and GEX2 homologs from maize, rice (Oryza sativa), Arabidopsis, and poplar (Populus trichocarpa) revealed a core binding site for Dof transcription factors. The AtGEX1 and AtGEX2 promoters will be useful for manipulating gene expression in sperm cells, for localization and functional analyses of sperm proteins, and for imaging of sperm dynamics as they are transported in the pollen tube to the embryo sac.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.