Crumb rubber (CR) derived from grinding of end-of-life tyres (ELTs) may be successfully used as a bitumen modifier or as a supplementary component in the production of bituminous mixtures employed for the construction and maintenance of road pavements. However, CRs deriving from different sources and production processes yield effects on performance of corresponding paving mixtures under traffic loading and on gaseous emissions produced during laying on site which may change considerably depending upon their physical and chemical properties. In order to quantitatively assess the possible variability of CR characteristics, 16 samples were taken from 9 Italian and 2 foreign ELT processing plants. Investigation activities included field surveys, during which plants were examined in detail, and laboratory tests, which focused on physical and chemical characterization of CR. Based on the analysis of available technical information and experimental data, it was possible to find relationships between the peculiar characteristics of treatment cycles and corresponding CR properties.
There is a growing
need to develop novel well-characterized biological
inks (bioinks) that are customizable for three-dimensional (3D) bioprinting
of specific tissue types. Gelatin methacryloyl (GelMA) is one such
candidate bioink due to its biocompatibility and tunable mechanical
properties. Currently, only low-concentration GelMA hydrogels (≤5%
w/v) are suitable as cell-laden bioinks, allowing high cell viability,
elongation, and migration. Yet, they offer poor printability. Herein,
we optimize GelMA bioinks in terms of concentration and cross-linking
time for improved skeletal muscle C2C12 cell spreading in 3D, and
we augment these by adding gold nanoparticles (AuNPs) or a two-dimensional
(2D) transition metal carbide (MXene nanosheets) for enhanced printability
and biological properties. AuNP and MXene addition endowed GelMA with
increased conductivity (up to 0.8 ± 0.07 and 0.9 ± 0.12
S/m, respectively, compared to 0.3 ± 0.06 S/m for pure GelMA).
Furthermore, it resulted in an improvement of rheological properties
and printability, specifically at 10 °C. Improvements in electrical
and rheological properties led to enhanced differentiation of encapsulated
myoblasts and allowed for printing highly viable (97%) stable constructs.
Taken together, these results constitute a significant step toward
fabrication of 3D conductive tissue constructs with physiological
relevance.
Linear-viscoelastic characteristics and performance are evaluated throughout the blending process of polyethylene and polypropylene with bitumen. Results indicate that type, form and percentage of polyolefin play a significant role in the time evolution of the composite's mechanical response. Toluene extraction of modified bitumen revealed, for the first time, the formation of a sponge-like polymer network. Visual inspection and Fourier transform infrared analysis of the polyolefins recovered after extraction indicates higher affinity of the polyethylene with bitumen in agreement with the rheological test results. The use of polypropylene is discouraged if rutting performance is a concern, and polyethylene in both pellets and powder form at 4%, and after 210 min of blending produces a modified bitumen with acceptable performance.
Over the last years, the replacement of traditional polymer modifiers with waste plastics has attracted increasing interest. The implementation of such technology would allow a drastic reduction of both production cost and landfill disposal of wastes. Among all, polyethylene-based plastics have been proved suitable for this purpose. The research activities presented in this paper aim to assess the synergistic effect of polyethylene and Fischer–Tropsch waxes on the viscoelastic properties and performance of the bitumen. In order to reduce the blending time, waxes, and polyethylene need to be added simultaneously. In fact, the presence of the waxes reduces the polarity of the bitumen matrix and increases the affinity with the polymer promoting its dispersion. Results demonstrate that the chain length of the waxes, the form of the added waste polyethylene, and the blending protocol have critical effects on the time-evolution of such properties. Short-chain waxes have a detrimental impact on the rutting resistance regardless of the blending protocol. On the contrary, long-chain waxes improve the overall behavior of the polyethylene-modified binders and, in particular, the resistance to permanent deformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.