We cloned and sequenced the pyruvate decarboxylase (PDC; EC 4.1.1.1) structural gene KIPDCA in the yeast Kluyveromyces lactis and found it to be allelic to the previously isolated rag6 mutation. The putative amino acid sequence of the KIPdcAp appeared to be highly homologous to those of the yeast Pdc proteins identified so far. The disruption of KIPDCA indicated that it is the only PDC structural gene in K. lactis, as evidenced by the lack of PDC activity and ethanol production in the pdcA delta strains and by the absence of growth on glucose in the presence of respiratory inhibitors. It was observed that expression of the KIPDCA gene is induced by glucose at the transcriptional level. Transcription of the gene was reduced in the rag1, rag2, rag5 and rag8 mutants, which are defective for the low-affinity glucose permease, phosphoglucose isomerase, hexokinase, and a positive regulator of RAG1 expression, respectively.
A high yield of lactic acid per gram of glucose consumed and the absence of additional metabolites in the fermentation broth are two important goals of lactic acid production by microrganisms. Both purposes have been previously approached by using a Kluyveromyces lactis yeast strain lacking the single pyruvate decarboxylase gene (KlPDC1) and transformed with the heterologous lactate dehydrogenase gene (LDH). The LDH gene was placed under the control the KlPDC1 promoter, which has allowed very high levels of lactate dehydrogenase (LDH) activity, due to the absence of autoregulation by KlPdc1p. The maximal yield obtained was 0.58 g g ؊1 , suggesting that a large fraction of the glucose consumed was not converted into pyruvate. In a different attempt to redirect pyruvate flux toward homolactic fermentation, we used K. lactis LDH transformant strains deleted of the pyruvate dehydrogenase (PDH) E1␣ subunit gene. A great process improvement was obtained by the use of producing strains lacking both PDH and pyruvate decarboxylase activities, which showed yield levels of as high as 0.85 g g ؊1 (maximum theoretical yield, 1 g g ؊1 ), and with high LDH activity.
The yeast Kluyveromyces lactis has a single structural gene coding for pyruvate decarboxylase (KlPDC1). In order to study the regulation of the expression of KlPDC1, we have sequenced (EMBL Accession No. Y15435) its promoter and have fused the promoter to the reporter gene lacZ from E. coli. Transcription analysis in a Klpdc1 strain showed that KlPDC1 expression is subject to autoregulation. The PDC1 gene from Saccharomyces cerevisiae was able to complement the Rag phenotype of the Klpdc1 mutant strain and it could also repress transcription of the KlPDC1-lacZ fusion on glucose. A deletion analysis of the promoter region was performed to study carbon source-dependent regulation and revealed that at least two cis-acting regions are necessary for full induction of gene expression on glucose. Other cis-elements mediate repression on ethanol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.