As a consequence of increasing computer power and more readily useable commercial and open source codes, Discrete Element Method (DEM) is becoming widely used across a range of applications to simulate increasingly complex processes. This is exacerbating the challenge of setting up simulations for industrial applications. The literature on input parameter selection is divided. A number of papers report methods for their direct measurement. Others, by contrast, propose a "calibration" approach where the particle properties are derived as adjustable parameters by quantitative comparison of experimental and simulation results. This paper reports on the calibration and validation of the input parameters for the specific case of cylindrical tablets represented by conjoined spheres. The initial steps are to not only assign and optimise the DEM input parameters but also optimise the shape representation; what degree of linearity of the edges and angularity of the corners are required to accurately reflect the cylindrical shape. The model was used to simulate two configurations of a rotating drum: an "attrition tester" with a single longitudinal baffle and an un-baffled drum. The results were compared qualitatively and quantitatively with experimental data. While the qualitative comparison was good in most cases, detailed quantitative comparison fared less well, with some significant errors. This study highlights some of the key issues for a wider-spread of industrial applications for DEM.
Selection or calibration of particle property input parameters is one of the key problematic aspects for the implementation of the discrete element method (DEM). In the current study, a parametric multi-level sensitivity method is employed to understand the impact of the DEM input particle properties on the bulk responses for a given simple system: discharge of particles from a flat bottom cylindrical container onto a plate. In this case study, particle properties, such as Young's modulus, friction parameters and coefficient of restitution were systematically changed in order to assess their effect on material repose angles and particle flow rate (FR). It was shown that inter-particle static friction plays a primary role in determining both final angle of repose and FR, followed by the role of inter-particle rolling friction coefficient. The particle restitution coefficient and Young's modulus were found to have insignificant impacts and were strongly cross correlated. The proposed approach provides a systematic method that can be used to show the importance of specific DEM input parameters for a given system and then potentially facilitates their selection or calibration. It is concluded that shortening the process for input parameters selection and calibration can help in the implementation of DEM.Keywords Discrete element method · DEM input parameters · DEM calibration · Parameter sensitivity analysis Electronic supplementary material The online version of this article (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.