To evaluate whether treatment sequence affects romosozumab response, this analysis reviewed studies where romosozumab was administered before or following an antiresorptive (alendronate or denosumab). Initial treatment with romosozumab followed by an antiresorptive resulted in larger increases in bone mineral density of both hip and spine compared with the reverse sequence. Introduction Teriparatide followed by an antiresorptive increases bone mineral density (BMD) more than using an antiresorptive first. To evaluate whether treatment sequence affects romosozumab response, we reviewed randomized clinical trials where romosozumab was administered before (ARCH, FRAME) or following (STRU CTU RE, Phase 2 extension) an antiresorptive (alendronate or denosumab, respectively). Methods We evaluated BMD percentage change for total hip (TH) and lumbar spine (LS) and response rates (BMD gains ≥ 3% and ≥ 6%) at years 1 and 2 (except STRU CTU RE with only 1-year data available). Results With 1-year romosozumab initial therapy in ARCH and FRAME, TH BMD increased 6.2% and 6.0%, and LS BMD increased 13.7% and 13.1%, respectively. When romosozumab was administered for 1 year after alendronate (STRU CTU RE) or denosumab (Phase 2 extension), TH BMD increased 2.9% and 0.9%, respectively, and LS BMD increased 9.8% and 5.3%, respectively. Over 2 years, TH and LS BMD increased 7.1% and 15.2% with romosozumab/alendronate, 8.5% and 16.6% with romosozumab/denosumab, and 3.8% and 11.5% with denosumab/romosozumab, respectively. A greater proportion of patients achieved BMD gains ≥ 6% when romosozumab was used first, particularly for TH, versus the reverse sequence (69% after romosozumab/denosumab; 15% after denosumab/romosozumab). Conclusion In this study, larger mean BMD increases and greater BMD responder rates were achieved when romosozumab was used before, versus after, an antiresorptive agent. Since BMD on treatment is a strong surrogate for bone strength and fracture risk, this analysis supports the thesis that initial treatment with romosozumab followed by an antiresorptive will result in greater efficacy versus the reverse sequence.
Recent studies suggest that the RANK/RANKL system impacts muscle function and/or mass. In the pivotal placebo‐controlled fracture trial of the RANKL inhibitor denosumab in women with postmenopausal osteoporosis, treatment was associated with a lower incidence of non‐fracture‐related falls (p = 0.02). This ad hoc exploratory analysis pooled data from five placebo‐controlled trials of denosumab to determine consistency across trials, if any, of the reduction of fall incidence. The analysis included trials in women with postmenopausal osteoporosis and low bone mass, men with osteoporosis, women receiving adjuvant aromatase inhibitors for breast cancer, and men receiving androgen deprivation therapy for prostate cancer. The analysis was stratified by trial, and only included data from the placebo‐controlled period of each trial. A time‐to‐event analysis of first fall and exposure‐adjusted subject incidence rates of falls were analyzed. Falls were reported and captured as adverse events. The analysis comprised 10,036 individuals; 5030 received denosumab 60 mg subcutaneously once every 6 months for 12 to 36 months and 5006 received placebo. Kaplan–Meier estimates showed an occurrence of falls in 6.5% of subjects in the placebo group compared with 5.2% of subjects in the denosumab group (hazard ratio = 0.79; 95% confidence interval 0.66–0.93; p = 0.0061). Heterogeneity in study designs did not permit overall assessment of association with fracture outcomes. In conclusion, denosumab may reduce the risk of falls in addition to its established fracture risk reduction by reducing bone resorption and increasing bone mass. These observations require further exploration and confirmation in studies with muscle function or falls as the primary outcome. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research..
It is uncertain whether the risk of vertebral fracture (VF) and multiple vertebral fractures (MVFs; ≥2 VFs) after denosumab (DMAb) discontinuation is related to treatment duration. A prior analysis of Fracture Reduction Evaluation of Denosumab in Osteoporosis Every 6 Months (FREEDOM) and FREEDOM Extension trials did not find a relationship with DMAb duration and may have underreported MVF incidence because it included women who did not have radiographs. In this post hoc exploratory analysis, the crude incidence and annualized rates of VF and MVF were determined in patients with ≥7 months' follow-up and ≥1 spine radiograph after discontinuing placebo or DMAb. A multivariate analysis was performed to identify predictors of MVF. Clinical characteristics of patients with ≥4 VFs were explored. This analysis included women who discontinued after placebo (n = 327) or DMAb either from FREEDOM or FREEDOM Extension (n = 425). The DMAb discontinuation group was subsequently dichotomized by treatment duration: short-term (≤3 years; n = 262) and long-term (>3 years; n = 213) treatment. For any VF, exposure-adjusted annualized rates per 100 patient-years (95% confidence interval [CI]) were 9.4 (95% CI, 6.4-13.4) for placebo, 6.7 (95% CI, 4.2-10.1) for short-term DMAb, and 10.7 (95% CI, 7.4-15) for long-term DMAb. Annualized rates for MVF were 3.6 (95% CI, 1.9-6.3), 2.9 (95% CI, 1.4-5.4), and 7.5 (95% CI, 4.8-11.1), respectively. Annualized rates for ≥4 VFs were 0.59 (95% CI, 0.1-2.1), 0.57 (95% CI, 0.1-2.1), and 3.34 (95% CI, 1.7-6.0), respectively. In a multivariate regression model, DMAb duration was significantly associated with MVF risk (odds ratio 3.0; 95% CI, 1.4-6.5). Of 15 patients with ≥4 VFs, 13 had DMAb exposure (mean AE standard deviation [SD], 4.9 AE 2.2 years). The risk of MVF after DMAb discontinuation increases with increased duration of DMAb treatment. Patients transitioning off DMAb after 3 years may warrant more frequent administration of zoledronic acid or another bisphosphonate to maintain bone turnover and bone mineral density (BMD) and prevent MVF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.