SUMMARYOver the past few years, Bayesian models for combining output from numerical models and air monitoring data have been applied to environmental data sets to improve spatial prediction. This paper develops a new hierarchical Bayesian model (HBM) for fine particulate matter (PM 2.5 ) that combines U. S. EPA Federal Reference Method (FRM) PM 2.5 monitoring data and Community Multi-scale Air Quality (CMAQ) numerical model output. The model is specified in a Bayesian framework and fitted using Markov Chain Monte Carlo (MCMC) techniques. We find that the statistical model combining monitoring data and CMAQ output provides reliable information about the true underlying PM 2.5 process over time and space. We base these conclusions on results of a validation exercise in which independent monitoring data were compared with predicted values from the HBM and predictions from a standard kriging model based solely on the monitoring data.
Considerable attention has been given to the relationship between levels of fine particulate matter (particulate matter ≤ 2.5 μm in aerodynamic diameter; PM2.5) in the atmosphere and health effects in human populations. Since the U.S. Environmental Protection Agency began widespread monitoring of PM2.5 levels in 1999, the epidemiologic community has performed numerous observational studies modeling mortality and morbidity responses to PM2.5 levels using Poisson generalized additive models (GAMs). Although these models are useful for relating ambient PM2.5 levels to mortality, they cannot directly measure the strength of the effect of exposure to PM2.5 on mortality. In order to assess this effect, we propose a three-stage Bayesian hierarchical model as an alternative to the classical Poisson GAM. Fitting our model to data collected in seven North Carolina counties from 1999 through 2001, we found that an increase in PM2.5 exposure is linked to increased risk of cardiovascular mortality in the same day and next 2 days. Specifically, a 10-μg/m3 increase in average PM2.5 exposure is associated with a 2.5% increase in the relative risk of current-day cardiovascular mortality, a 4.0% increase in the relative risk of cardiovascular mortality the next day, and an 11.4% increase in the relative risk of cardiovascular mortality 2 days later. Because of the small sample size of our study, only the third effect was found to have > 95% posterior probability of being > 0. In addition, we compared the results obtained from our model to those obtained by applying frequentist (or classical, repeated sampling-based) and Bayesian versions of the classical Poisson GAM to our study population.
Transfer of chemicals from contaminated surfaces such as foliage, floors, and furniture is a potentially significant source of both occupational exposure and children's residential exposure. Increased understanding of relevant factors influencing transfers from contaminated surfaces to skin and resulting dermal-loading will reduce uncertainty in exposure assessment. In a previously reported study, a fluorescence imaging system was developed, tested, and used to measure transfer of riboflavin residues from surfaces to hands. Parameters evaluated included surface type, surface loading, contact motion, pressure, duration, and skin condition. Results of the initial study indicated that contact duration and pressure were not significant for the range of values tested, but that there are potentially significant differences in transfer efficiencies of different compounds. In the study reported here, experimental methods were refined and additional transfer data were collected. A second fluorescent tracer, Uvitex OB, with very different physicochemical properties than riboflavin, was also evaluated to better characterize the range of transfers that may be expected for a variety of compounds. Fluorescent tracers were applied individually to surfaces and transfers to skin were measured after repeated hand contacts with the surface. Additional trials were conducted to compare transfer of tracers and co-applied pesticide residues. Results of this study indicate that dermal loadings of both tracers increase through the seventh brief contact. Dermal loading of Uvitex tends to increase at a higher rate than dermal loadings of riboflavin. Measurement of co-applied tracer and pesticide suggest results for these two tracers may provide reasonable bounding estimates of pesticide transfer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.