Biological responses to estrogens in normal and malignant tissues are mainly mediated by the estrogen receptors ERa and ERb, which function as ligand-activated transcription factors. In addition, the G proteincoupled receptor GPR30 (GPER) mediates estrogenic signaling in breast cancer cells and cancer-associated
BackgroundA wider biological role of 1alpha,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the active metabolite of vitamin D3, in tissues not primarily related to mineral metabolism was suggested. Recently, we evidenced the ultrastructural localization the 1,25(OH)2D3 receptor in the human sperm. However, the 1,25(OH)2D3 action in human male reproduction has not yet been clarified.Methods and ResultsBy RT-PCR, Western blot and Immunofluorescence techniques, we demonstrated that human sperm expresses the 1,25(OH)2D3 receptor (VDR). Besides, 25(OH)D3-1 alpha-hydroxylase, evidenced by Western blot analysis, indicated that in sperm 1,25(OH)2D3 is locally produced, highlighting the potential for autocrine-paracrine responses. 1,25(OH)2D3 through VDR, increased intracellular Ca2+ levels, motility and acrosin activity revealing an unexpected significance of this hormone in the acquisition of fertilizing ability. In sperm, 1,25(OH)2D3 through VDR, reduces triglycerides content concomitantly to the increase of lipase activity. Rapid responses stimulated by 1,25(OH)2D3 have been observed on Akt, MAPK and GSK3 implying that this secosteroid is involved in different sperm signalling pathways.ConclusionOur data extended the role of 1,25(OH)2D3 beyond its conventional physiological actions, paving the way for novel therapeutic opportunities in the treatment of the male reproduction disorders.
Adiponectin, the most abundant protein secreted by adipose tissue, exhibits insulin-sensitizing, anti-inflammatory, antiatherogenic, and antiproliferative properties. In addition, it appears to play an important role also in the development and progression of several obesity-related malignancies, including breast cancer. Here, we demonstrated that adiponectin induces a dichotomic effect on breast cancer growth. Indeed, it stimulates growth in ERα+ MCF-7 cells while inhibiting proliferation of ERα- MDA-MB-231 cells. Notably, only in MCF-7 cells adiponectin exposure exerts a rapid activation of MAPK phosphorylation, which is markedly reduced when knockdown of the ERα gene occurred. In addition, adiponectin induces rapid IGF-IR phosphorylation in MCF-7 cells, and the use of ERα siRNA prevents this effect. Moreover, MAPK activation induced by adiponectin was reversed by IGF-IR siRNA. Coimmunoprecipitation studies show the existence of a multiprotein complex involving AdipoR1, APPL1, ERα, IGF-IR, and c-Src that is responsible for MAPK signaling activation in ERα+ positive breast cancer cells. It is well known that in addition to the rapid effects through non-genomic mechanisms, ERα also mediates nuclear genomic actions. In this concern, we demonstrated that adiponectin is able to transactivate ERα in MCF-7 cells. We showed the classical features of ERα transactivation: nuclear localization, downregulation of mRNA and protein levels, and upregulation of estrogen-dependent genes. Thus, our study clarifies the molecular mechanism through which adiponectin modulates breast cancer cell growth, providing evidences on the cell-type dependency of adiponectin action in relationship to ERα status.
Leptin, a cytokine mainly produced by adipocytes, seems to play a crucial role in mammary carcinogenesis. In the present study, we explored the mechanism of leptin-mediated promotion of breast tumor growth using xenograft MCF-7 in 45-dayold female nude mice, and an in vitro model represented by MCF-7 three-dimensional cultures. Xenograft tumors, obtained only in animals with estradiol (E 2 ) pellet implants, doubled control value after 13 weeks of leptin exposure. In three-dimensional cultures, leptin and/or E 2 enhanced cellcell adhesion. This increased aggregation seems to be dependent on E-cadherin because it was completely abrogated in the presence of function-blocking E-cadherin antibody or EGTA, a calcium-chelating agent. In three-dimensional cultures, leptin and/or E 2 treatment significantly increased cell growth, which was abrogated when E-cadherin function was blocked. These findings well correlated with an increase of mRNA and protein content of E-cadherin in three-dimensional cultures and in xenografts. In MCF-7 cells both hormones were able to activate E-cadherin promoter. Mutagenesis studies, electrophoretic mobility shift assay, and chromatin immunoprecipitation assays revealed that cyclic AMP-responsive element binding protein and Sp1 motifs, present on E-cadherin promoter, were important for the up-regulatory effects induced by both hormones on E-cadherin expression in breast cancer MCF-7 cells. In conclusion, the present study shows how leptin is able to promote tumor cell proliferation and homotypic tumor cell adhesion via an increase of E-cadherin expression. This combined effect may give reasonable emphasis to the important role of this cytokine in stimulating primary breast tumor cell growth and progression, particularly in obese women. [Cancer Res 2007;67(7):3412-21]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.