Anthropogenic greenhouse gas (GHG) emissions are the highest they have ever been and the climate change they have triggered is having consequences on both human and natural systems. The aim of the paper is to demonstrate that an integrated reading of urban and rural land uses in relation to GHG emissions is feasible and useful at the regional level in order to reach emissions reduction. The Po Valley in Italy is an emblematic case study because its features are unique in Europe for high population density, urban sprawl, intensive agriculture, livestock management and consequently high emission levels. The methodology examines the total GHG emissions in relation to urban and rural areas. Between 2000 and 2010, the trend of CO2-equivalent emissions for the macro-regions of Italy shows a national decrease in contrast to the area of our case study which has seen a steady increase and growth trend over time. The paper analyzes some possible reasons linked to this anomaly, and it presents an estimation of the CO2-equivalent emissions related to the use of agricultural land. The main output of the paper is a new overview for research that aims to propose integrated solutions and policies at the local level with a wider vision focused on GHG emission knowledge, supported by Strategic Environmental Assessment.
Climate change is globally causing more intense meteorological phenomena. Our cities experience increased rainfall intensity, more intense heat waves, and prolonged droughts providing economic, social, health and environmental challenges. Combined with population growth and rapid urbanization, the increasing impact of climate change will make our cities more and more vulnerable, especially to urban flooding. In order to adapt our urban water systems to these challenges, the adoption of newly emerging water management strategies is required. The complexity and scale of this challenge calls for the integration of knowledge from different disciplines and collaborative approaches. The water sensitive cities principles provide guidance for developing new techniques, strategies, policies, and tools to improve the livability, sustainability, and resilience of cities. In this study, the DAnCE4Water modeling approach promoting the development of water sensitive cities was applied to Parma, an Italian town that has faced serious water issues in the last few years. The city, indeed, had to face the consequences of flooding several times, caused by the inadequacy of both the network of open channels and the sewerage network due to the urban expansion and climate change of the last 30 years. Through the model, the efficiency of decentralized technologies, such as green roofs and porous pavement, and their integration with the existing centralized combined sewer system was assessed under a range of urban development scenarios. The obtained results show that the adoption of an integrated approach, including soft engineering hydraulic strategies, consisting in the use of natural and sustainable solutions, can increase resilience to urban flooding. Further, the study shows that there is a critical need for strategic investment in solutions that will deliver long-term sustainable outcomes.
A loss of natural capital within cities and their surrounding areas has been noticed over the last decades. Increasing development associated with higher sealing rates has caused a general loss of Urban Green Spaces (UGS) within the urban environment, whereas urban sprawl and the improvement of road networks have deeply fragmented the surrounding landscape and jeopardized ecosystems connectivity. UGS are an essential component of the urban system, and their loss has a greater impact on, e.g., ecological and hydrological processes, threatening human well-being. Different types and spatial configurations of UGS may affect their own ability to provide ecosystem services, such as biodiversity support and water regulation. Nevertheless, the study of UGS spatial patterns is a research branch poorly addressed. Moreover, UGS analyses are mainly focused on public and vast green spaces, but seldom on informal, private, and interstitial ones, returning a myopic representation of urban green areas. Therefore, this study investigates the UGS spatial patterns within six Southern European cities, using the urban morphology analysis to assess all urban vegetated lands. Results revealed three main Urban Green Spatial Patterns (UGSPs): Fragmented, Compact, and Linear Distributions. UGSPs taxonomy represents a novelty in the urban morphology field and may have important implications for the ability to provide ecosystem services and, thus, human well-being.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.