Defects are ubiquitous in solids, often introducing new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering,1 a long-time subject of theoretical investigations.1-3 Intrinsic, two-dimensional (2D) magnetic materials4-7 are attracting increasing attention for their unique properties including layer-dependent magnetism4 and electric field modulation6. Yet, inducing magnetism into otherwise non-magnetic 2D materials remains a challenge. Here, we investigate magneto-transport properties of ultrathin PtSe 2 crystals and demonstrate unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or antiferromagnetic ground state orderings depending on the number of layers in this ultra-thin material. The change in the device resistance upon application of a ~ 25 mT magnetic field is as high as 400 Ω with a magnetoresistance (MR) value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange couplings across ultra-thin films of PtSe 2 are responsible for the observed layer-dependent magnetism. Considering the existence of such unavoidable growthrelated vacancies in 2D materials, 8,9 these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
We provide an unprecedented view on the nature of the wet electron, which is instrumental to understanding the properties of this fundamental state in liquid water.
Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials, have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we have used molecular beam epitaxy (MBE) to grow atomically thin MoSe2 on GaAs(111)B. No intermediate compounds were detected at the interface of as-grown films. Careful optimization of the growth temperature can result in the growth of highly aligned films with only two possible crystalline orientations due to broken inversion symmetry. As-grown films can be transferred onto insulating substrates, allowing their optical and electrical properties to be probed. By using polymer electrolyte gating, we have achieved ambipolar transport in MBE-grown MoSe2. The temperature-dependent transport characteristics can be explained by the 2D variable-range hopping (2D-VRH) model, indicating that the transport is strongly limited by the disorder in the film.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.