New Findings r What is the central question of this study?Does the combination of a higher neural respiratory drive and greater dynamic mechanical ventilatory constraints during exercise in healthy women versus men form the mechanistic basis of sex differences in activity-related dyspnoea? r What is the main finding and its importance?Sex differences in activity-related dyspnoea in health primarily reflected the awareness of a higher neural respiratory drive needed to achieve any given ventilation during exercise in the setting of relatively greater dynamic mechanical ventilatory constraints in women. These findings may have implications for our understanding of the mechanisms of sex differences in exertional dyspnoea in variants of health (e.g. the elderly) and in patients with cardiorespiratory disease.The purpose of this study was to elucidate the physiological mechanisms of sex differences in exertional dyspnoea. We compared detailed measures of neural respiratory motor drive [diaphragmatic EMG (EMGdi) expressed as a percentage of maximal EMGdi (EMGdi%max)], breathing pattern, operating lung volumes, dynamic respiratory mechanics [tidal oesophageal (P oes,tidal %peak) and transdiaphragmatic pressure swings (P di,tidal %peak) expressed as a percentage of their respective peak values] and sensory intensity and unpleasantness ratings of dyspnoea during symptom-limited incremental cycle exercise in healthy young women (n = 25) and men (n = 25). The tidal volume to forced vital capacity ratio (V T %FVC), breathing frequency, EMGdi%max, P oes,tidal %peak, P di,tidal %peak and sensory intensity and unpleasantness ratings of dyspnoea were higher, while dynamic inspiratory capacity and inspiratory reserve volume were lower at a standardized absolute ventilation of 55 l min −1 during submaximal exercise in women versus men (all P < 0.05). In contrast, sex had no demonstrable effect on the inter-relationships between exercise-induced increases in V T %FVC, EMGdi%max and sensory intensity and unpleasantness ratings of dyspnoea. The results of this study suggest that sex differences in the intensity and unpleasantness of exertional dyspnoea in health are likely to reflect the awareness of a relatively higher neural respiratory motor drive (or EMGdi%max) needed to achieve any given ventilation during exercise in the setting of relatively greater dynamic mechanical constraints on V T expansion in women.
We examined the effects of age, sex, and their interaction on mechanical ventilatory constraint and dyspnea during exercise in 22 older (age = 68 ± 1 yr; n = 12 women) and 22 younger (age = 25 ± 1 y, n = 11 women) subjects. During submaximal exercise, older subjects had higher end-inspiratory (EILV) and end-expiratory (EELV) lung volumes than younger subjects (both P < 0.05). During maximal exercise, older subjects had similar EILV ( P > 0.05) but higher EELV than younger subjects ( P < 0.05). No sex differences in EILV or EELV were observed. We noted that women had a higher work of breathing (W) for a given minute ventilation (V̇e) ≥65 l/min than men ( P < 0.05) and older subjects had a higher W for a given V̇e ≥60 l/min ( P < 0.05). No sex or age differences in W were present at any submaximal relative V̇e. At absolute exercise intensities, older women experienced expiratory flow limitation (EFL) more frequently than older men ( P < 0.05), and older subjects were more likely to experience EFL than younger subjects ( P < 0.05). At relative exercise intensities, women and older individuals experienced EFL more frequently than men and younger individuals, respectively (both P < 0.05). There were significant effects of age, sex, and their interaction on dyspnea intensity during exercise at absolute, but not relative, intensities (all P < 0.05). Across subjects, dyspnea at 80 W was significantly correlated with indexes of mechanical ventilatory constraint (all P < 0.05). Collectively, our findings suggest age and sex have significant impacts on W, operating lung volumes, EFL, and dyspnea during exercise. Moreover, it appears that mechanical ventilatory constraint may partially explain sex differences in exertional dyspnea in older individuals. NEW & NOTEWORTHY We found that age and sex have a significant effect on mechanical ventilatory constraint and the perception of dyspnea during exercise. We also observed that the perception of exertional dyspnea is associated with indexes of mechanical ventilatory constraint. Collectively, our results suggest that the combined influences of age and biological sex on mechanical ventilatory constraint during exercise contributes, in part, to the increased perception of dyspnea during exercise in older women.
Understanding sex differences in the qualitative dimensions of exertional dyspnea may provide insight into why women are more affected by this symptom than men. This study explored the evolution of the qualitative dimensions of dyspnea in 70 healthy, young, physically active adults (35 M and 35 F). Participants rated the intensity of their breathing discomfort (Borg 0-10 scale) and selected phrases that best described their breathing from a standardized list (work/effort, unsatisfied inspiration, and unsatisfied expiration) throughout each stage of a symptom-limited incremental-cycle exercise test. Following exercise, participants selected phrases that described their breathing at maximal exercise from a list of 15 standardized phrases. Intensity of breathing discomfort was significantly higher in women for a given ventilation, but differences disappeared when ventilation was expressed as a percentage of maximum voluntary ventilation. The dominant qualitative descriptor in both sexes throughout exercise was increased work/effort of breathing. At peak exercise, women were significantly more likely to select the following phrases: "my breathing feels shallow," "I cannot get enough air in," "I cannot take a deep breath in," and "my breath does not go in all the way." Women adopted a more rapid and shallow breathing pattern and had significantly higher end-inspiratory lung volumes relative to total lung capacity throughout exercise relative to men. These findings suggest that men and women do not differ in their perceived quality of dyspnea during submaximal exercise, but subjective differences appear at maximal exercise and may be related, at least in part, to underlying sex differences in breathing patterns and operating lung volumes during exercise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.