West Nile virus, which was recently introduced to North America, is a mosquito-borne pathogen that infects a wide range of vertebrate hosts, including humans. Several species of birds appear to be the primary reservoir hosts, whereas other bird species, as well as other vertebrate species, can be infected but are less competent reservoirs. One hypothesis regarding the transmission dynamics of West Nile virus suggests that high bird diversity reduces West Nile virus transmission because mosquito blood-meals are distributed across a wide range of bird species, many of which have low reservoir competence. One mechanism by which this hypothesis can operate is that high-diversity bird communities might have lower community-competence, defined as the sum of the product of each species' abundance and its reservoir competence index value. Additional hypotheses posit that West Nile virus transmission will be reduced when either: (1) abundance of mosquito vectors is low; or (2) human population density is low. We assessed these hypotheses at two spatial scales: a regional scale near Saint Louis, MO, and a national scale (continental USA). We found that prevalence of West Nile virus infection in mosquito vectors and in humans increased with decreasing bird diversity and with increasing reservoir competence of the bird community. Our results suggest that conservation of avian diversity might help ameliorate the current West Nile virus epidemic in the USA.
An understanding of the demographic processes contributing to invasions would improve our mechanistic understanding of the invasion process and improve the efficiency of prevention and control efforts. However, field comparisons of the demography of invasive and noninvasive species have not previously been conducted. We compared the in situ demography of 17 introduced plant species in St. Louis, Missouri, USA, to contrast the demographic patterns of invasive species with their less invasive relatives across a broad sample of angiosperms. Using herbarium records to estimate spread rates, we found higher maximum spread rates in the landscape for species classified a priori as invasive than for noninvasive introduced species, suggesting that expert classifications are an accurate reflection of invasion rate. Across 17 species, projected population growth was not significantly greater in invasive than in noninvasive introduced species. Among five taxonomic pairs of close relatives, however, four of the invasive species had higher projected population growth rates compared with their noninvasive relative. A Life Table Response Experiment suggested that the greater projected population growth rate of some invasive species relative to their noninvasive relatives was primarily a result of sexual reproduction. The greater sexual reproduction of invasive species is consistent with invaders having a life history strategy more reliant on fecundity than survival and is consistent with a large role of propagule pressure in invasion. Sexual reproduction is a key demographic correlate of invasiveness, suggesting that local processes influencing sexual reproduction, such as enemy escape, might be of general importance. However, the weak correlation of projected population growth with spread rates in the landscape suggests that regional processes, such as dispersal, may be equally important in determining invasion rate.
Although many factors influence the ability of exotics to invade successfully, most studies focus on only a few variables to explain invasion; attempts at theoretical synthesis are largely untested. The niche opportunities framework proposes that the demographic success of an invader is largely affected by the availability of resources and the abundance of its enemies. Here, we use a 31-year study from a desert ecosystem to examine the niche opportunities framework via the invasion of the annual plant Erodium cicutarium. While the invader remained rare for two decades, a decline in granivory combined with an ideal climate window created an opportunity for E. cicutarium to escape control and become the dominant annual plant in the community. We show that fluctuations in consumption and resources can create niche opportunities for invaders and highlight the need for additional long-term studies to track the influence of changing climate and community dynamics on invasions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.