The localized surface plasmon resonance (LSPR) property of metallic nanoparticles is widely exploited for chemical and biological sensing. Selective biosensing of molecules using functionalized nanoparticles has become a major research interdisciplinary area between chemistry, biology and material science. Noble metals, especially gold (Au) and silver (Ag) nanoparticles, exhibit unique and tunable plasmonic properties; the control over these metal nanostructures size and shape allows manipulating their LSPR and their response to the local environment. In this review, we will focus on Ag-based nanoparticles, a metal that has probably played the most important role in the development of the latest plasmonic applications, owing to its unique properties. We will first browse the methods for AgNPs synthesis allowing for controlled size, uniformity and shape. Ag-based biosensing is often performed with coated particles; therefore, in a second part, we will explore various coating strategies (organics, polymers, and inorganics) and their influence on coated-AgNPs properties. The third part will be devoted to the combination of gold and silver for plasmonic biosensing, in particular the use of mixed Ag and AuNPs, i.e., AgAu alloys or Ag-Au core@shell nanoparticles will be outlined. In the last part, selected examples of Ag and AgAu-based plasmonic biosensors will be presented.
Many anticancer compounds are strong inhibitors of thioredoxin reductases (TrxRs), selenoenzymes involved in cellular redox regulation. This study examined the effect of two hydroxyferrocifens (1, FcOH; 2, FcOHTAM) and of their corresponding quinone methides (QMs), 1-QM, and 2-QM, on these enzymes. In vitro, both QMs were more potent TrxR inhibitors (IC50 ≈ 2.5 μM) than the hydroxyferrocifens (IC50 ≈ 15 μM). This inhibition was due to a Michael addition of the penultimate selenocysteine residue of TrxRs to the QMs. In Jurkat cancer cells, both 2 and 2-QM inhibited TrxRs in the same proportion, leading to accumulation of oxidized forms of thioredoxin, while 1 and 1-QM were scarcely effective. This difference of behavior was ascribed to the competitive conversion of 1-QM to an inactive indene in protic medium. This set of experiments confirms for the first time the role played by ferrocenyl quinone methides on several biological targets and gives a molecular basis for these effects. It also highlights differences in the mechanisms of action of 1 and 2 in cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.