Chia is a seed native to the region that extends from the North of Mexico to Guatemala, and it has been target of study for food enrichment. Many of its newly developed functional foods contain bioactive compounds including dietary fiber, antioxidants and other substances. The objective of this study was to evaluate chia seed (Salvia hispanica L) from her chemical components and prove their claim for functional properties. Chia seeds contain high levels of lipids (34.4%) and are rich in Omega-3, Omega-6 and Omega-9, which constituted 62, 17.4 and 10.5% of the total lipids, respectively. Chia seed also contain fibers (23.7%) and proteins (19.6%). Their extracted phenolic compounds (32.35 µg GAE .mL extract-1) showed antioxidant activity. From the results obtained in the analysis, one should explore the use of this seed in food products, aiming at adding nutritional value and producing foods which contribute to the well-being and health of humans.
In previous studies, it has not been reported that protein isolated from chia interferes favorably with antibacterial activity, and reduces cholesterol synthesis. The objective of this study was to determine whether commonly used commercial microbial proteases can be utilized to generate chia protein-based antibacterial and hypocholesterolemic hydrolysates/peptides, considering the effects of protein extraction method. Alcalase, Flavourzyme and sequential Alcalase-Flavourzyme were used to produce hydrolysates from chia protein (CF), protein-rich fraction (PRF) and chia protein concentrates (CPC1 and CPC2). These hydrolysates were evaluated for their antimicrobial activity against Gram-positive (G) and Gram-negative (G) microorganisms. The protein hydrolysates were purified by ultrafiltration through a membrane with 3 kDa nominal molecular weight, for evaluation of hypocholesterolemic activity. An inhibition zone was observed when the hydrolysate was tested against S. aureus, and minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values were obtained. Peptides from chia protein with molecular mass lower than 3 kDa reduced up to 80.7% of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) enzymatic reaction velocity. It was also observed that, independent of the method used to obtain chia proteins, the fractions showed relevant bioactivity. Moreover, the intensity of the bioactivity varied with the method for obtaining the protein and with the enzyme used in the hydrolysis process. This is the first report to demonstrate that chia peptides are able to inhibit cholesterol homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.