Predicting the absorption of gases and liquids in semicrystalline polymers is of critical importance for numerous applications; the mechanical and transport properties of these materials are highly dependent on the amount of solutes dissolved in their bulk. For most semicrystalline polymers which are in contact with an external fluid, the observed uptake of the solute is found to be lower than that predicted by treating the amorphous domains of the polymer as subcooled polymer melts at the same thermodynamic state. This observation has recently led to the hypothesis that the amorphous domains effectively behave as polymer liquids subject to an additional “constraint pressure” which reduces the equilibrium solubility in the domains. We present a new statistical mechanical model of semicrystalline polymers. The constraint pressure emerges naturally from our treatment, as a property of the interlamellar amorphous domains caused by the stretching and localization in space of the tie-molecules (polymer chains linking different lamellae). By assuming that the interlamellar domains exchange monomers reversibly with the lamellae, the model allows one to simultaneously predict the increase of constraint pressure at low temperatures and the variation of the lamellar thickness as a function of temperaturea phenomenon known as premelting. The sorption isotherms of a range of fluids in different polyethylene and polypropylene samples are determined experimentally and the data is compared with calculations of the new model using the SAFT-VR Mie EoS. In order to accurately predict the absorption close to the vapor pressure of the penetrant, we find that it is essential to include the “free”, unconstrained amorphous domains in the description, resulting in a multiscale model with two adjustable parameters (the fractions of tie-molecules and free amorphous domains) that characterize the morphology of a given semicrystalline polymer sample. The trends observed for the adjusted parameters qualitatively match other estimates reported in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.