The structure and interactions of water species in hydrated Nafion membranes as a function of water content were investigated on the basis of medium-infrared spectral analysis and molecular dynamics (MD) simulations. The spectral decomposition of the FT-IR data in the stretching OH region was performed on different levels of hydration of the sulfate functional groups (lambdaH2O/RSO3- = 2-22). Quantum mechanical calculations of two model systems [perfluoroethanesulfonic acid/(H2O)6 cluster] and a [perfluorobutanesulfonic acid/(H2O)6 crystal] were carried out in order to account for the band assignments of Nafion in the stretching OH region (2500-4000 cm-1). Our findings indicated that the secondary structure of water species in Nafion can be accurately explained in terms of our reactive force field for water. The distinction between "surface" and "bulk" water contributions in Nafion membrane pores is proposed along with a quantitative estimate of the different types of OH groups present in the system. The average pore size was calculated and supported by the spectral results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.