Semantic labeling (or pixel-level land-cover classification) in ultra high resolution imagery (< 10cm) requires statistical models able to learn high level concepts from spatial data, with large appearance variations. Convolutional Neural Networks (CNNs) achieve this goal by learning discriminatively a hierarchy of representations of increasing abstraction.In this paper we present a CNN-based system relying on an downsample-then-upsample architecture. Specifically, it first learns a rough spatial map of high-level representations by means of convolutions and then learns to upsample them back to the original resolution by deconvolutions. By doing so, the CNN learns to densely label every pixel at the original resolution of the image. This results in many advantages, including i) stateof-the-art numerical accuracy, ii) improved geometric accuracy of predictions and iii) high efficiency at inference time.We test the proposed system on the Vaihingen and Potsdam sub-decimeter resolution datasets, involving semantic labeling of aerial images of 9cm and 5cm resolution, respectively. These datasets are composed by many large and fully annotated tiles allowing an unbiased evaluation of models making use of spatial information. We do so by comparing two standard CNN architectures to the proposed one: standard patch classification, prediction of local label patches by employing only convolutions and full patch labeling by employing deconvolutions. All the systems compare favorably or outperform a state-of-the-art baseline relying on superpixels and powerful appearance descriptors. The proposed full patch labeling CNN outperforms these models by a large margin, also showing a very appealing inference time.
Defining an efficient training set is one of the most delicate phases for the success of remote sensing image classification routines. The complexity of the problem, the limited temporal and financial resources, as well as the high intraclass variance can make an algorithm fail if it is trained with a suboptimal dataset.Active learning aims at building efficient training sets by iteratively improving the model performance through sampling. A user-defined heuristic ranks the unlabeled pixels according to a function of the uncertainty of their class membership and then the user is asked to provide labels for the most uncertain pixels. This paper reviews and tests the main families of active learning algorithms: committee, large margin and posterior probability-based. For each of them, the most recent advances in the remote sensing community are discussed and some heuristics are detailed and tested. Several challenging remote sensing scenarios are considered, including very high spatial resolution and hyperspectral image classification.Finally, guidelines for choosing the good architecture are provided for new and/or unexperienced user.
In many computer vision tasks, we expect a particular behavior of the output with respect to rotations of the input image. If this relationship is explicitly encoded, instead of treated as any other variation, the complexity of the problem is decreased, leading to a reduction in the size of the required model.In this paper, we propose the Rotation Equivariant Vector Field Networks (RotEqNet), a Convolutional Neural Network (CNN) architecture encoding rotation equivariance, invariance and covariance. Each convolutional filter is applied at multiple orientations and returns a vector field representing magnitude and angle of the highest scoring orientation at every spatial location. We develop a modified convolution operator relying on this representation to obtain deep architectures. We test RotEqNet on several problems requiring different responses with respect to the inputs' rotation: image classification, biomedical image segmentation, orientation estimation and patch matching. In all cases, we show that RotEqNet offers extremely compact models in terms of number of parameters and provides results in line to those of networks orders of magnitude larger.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.