this paper presents a prediction model of solar radiation for dimensioning photovoltaic generation systems in the Atlantic Coast of Colombia, using artificial neural networks. As a case of study is presented the municipality "El Carmen de Bolivar" located in this region. To obtain the model, the average data of daily temperature, relative humidity and solar radiation from the last ten years, reported by weather stations in this city were used. Six neural networks were designed with six variants of input variables (temperature, humidity and month) and the output variable (solar radiation). The best result was obtained using all input variables. In the training process, the correlation index (R) between solar radiation estimated by the model and the recorded data was 0.8. In validating the correlation index was 0.77.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.