We determined the roles of TLR3 and TLR9 in adverse events of polymicrobial sepsis, with a focus on development of septic cardiomyopathy, progression of which we have recently shown to be complement- and histones-dependent. So Wt, TLR3-knocked out (K.O.), and TLR9-K.O. mice were subjected to polymicrobial sepsis following cecal ligation and puncture (CLP). In the absence of either TLR3 or TLR9, the intensity of echocardiogram (Echo)-Doppler dysfunction during development of cardiomyopathy was substantially reduced in the K.O. mice. Based on our prior studies emphasizing the adverse effects of plasma C5a and histones in the cardiomyopathy of sepsis, in TLR3- and TLR9-K.O. mice, there were striking reductions in plasma levels of C5a and histones as well as reduced levels of cytokines in plasma and heart tissue after CLP. Since we know that histones cause cardiac dysfunction, rat cardiomyocytes (CMs) were exposed in vitro to the histones (purified from calf thymus), which caused bleb formation on the surfaces of CMs, suggesting histones may perturb the cell membrane of CMs. In vitro, exposure of CMs to the histones for 3 hours caused lactate dehydrogenase release from CMs. These data indicate that sepsis-induced cardiac dysfunction requires presence of TLR3 and TLR9 and may be linked to histone-induced damage of CMs.
Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1β was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4.
Over the first days of polymicrobial sepsis, there is robust activation of the innate immune system, causing the appearance of proinflammatory cytokines and chemokines, along with the appearance of extracellular histones, which are highly proinflammatory and prothrombotic. In the current study, we studied different innate immune responses in mice with knockout (KO) of complement protein 6 (C6). Polymorphonuclear neutrophils (PMNs) from these KO mice had defective innate immune responses, including defective expression of surface adhesion molecules, generation of superoxide anion, and appearance of reactive oxygen species and histone release after activation of PMNs, along with defective phagocytosis. In addition, in C6 2/2 mice, the NLRP3 inflammasome was defective both in PMNs and in macrophages. When these KO mice were subjected to polymicrobial sepsis, their survival was improved, associated with reduced levels in the plasma of proinflammatory cytokines and chemokines and lower levels of histones in plasma. In addition, sepsis-induced cardiac dysfunction was attenuated in these KO mice. In a model of acute lung injury induced by LPS, C6 2/2 mice showed reduced PMN buildup and less lung epithelial/endothelial cell dysfunction (edema and hemorrhage). These data indicate that C6 2/2 mice have reduced innate immune responses that result in less organ injury and improved survival after polymicrobial sepsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.