The acquisition of resistance to apoptosis, the cell's intrinsic suicide program, is essential for cancers to arise and progress and is a major reason behind treatment failures. We show in this article that small molecule antagonists of the -1 receptor inhibit tumor cell survival to reveal caspase-dependent apoptosis. antagonist-mediated caspase activation and cell death are substantially attenuated by the prototypic -1 agonists (؉)-SKF10,047 and (؉)-pentazocine. Although several normal cell types such as fibroblasts, epithelial cells, and even receptor-rich neurons are resistant to the apoptotic effects of antagonists, cells that can promote autocrine survival such as lens epithelial and microvascular endothelial cells are as susceptible as tumor cells. Cellular susceptibility appears to correlate with differences in receptor coupling rather than levels of expression. In susceptible cells only, antagonists evoke a rapid rise in cytosolic calcium that is inhibited by -1 agonists. In at least some tumor cells, antagonists cause calcium-dependent activation of phospholipase C and concomitant calcium-independent inhibition of phosphatidylinositol 3-kinase pathway signaling. Systemic administration of antagonists significantly inhibits the growth of evolving and established hormone-sensitive and hormone-insensitive mammary carcinoma xenografts, orthotopic prostate tumors, and p53-null lung carcinoma xenografts in immunocompromised mice in the absence of side effects. Release of a receptor-mediated brake on apoptosis may offer a new approach to cancer treatment.
Adverse early-life experiences, such as poor maternal care, program an abnormal stress response that may involve an altered balance between excitatory and inhibitory signals. Here, we explored how early-life stress (ELS) affects excitatory and inhibitory transmission in corticotrophinreleasing factor (CRF)-expressing dorsal-medial (mpd) neurons of the neonatal mouse hypothalamus. We report that ELS associates with enhanced excitatory glutamatergic transmission that is manifested as an increased frequency of synaptic events and increased extrasynaptic conductance, with the latter associated with dysfunctional astrocytic regulation of glutamate levels. The neurosteroid 5␣-pregnan-3␣-ol-20-one (5␣3␣-THPROG) is an endogenous, positive modulator of GABA A receptors (GABA A Rs) that is abundant during brain development and rises rapidly during acute stress, thereby enhancing inhibition to curtail stress-induced activation of the hypothalamic-pituitary-adrenocortical axis. In control mpd neurons, 5␣3␣-THPROG potently suppressed neuronal discharge, but this action was greatly compromised by prior ELS exposure. This neurosteroid insensitivity did not primarily result from perturbations of GABAergic inhibition, but rather arose functionally from the increased excitatory drive onto mpd neurons. Previous reports indicated that mice (dams) lacking the GABA A R ␦ subunit (␦ 0/0 ) exhibit altered maternal behavior. Intriguingly, ␦ 0/0 offspring showed some hallmarks of abnormal maternal care that were further exacerbated by ELS. Moreover, in common with ELS, mpd neurons of ␦ 0/0 pups exhibited increased synaptic and extrasynaptic glutamatergic transmission and consequently a blunted neurosteroid suppression of neuronal firing. This study reveals that increased synaptic and tonic glutamatergic transmission may be a common maladaptation to ELS, leading to enhanced excitation of CRF-releasing neurons, and identifies neurosteroids as putative early regulators of the stress neurocircuitry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.