Follicular helper (TFH) cells provide crucial signals to germinal center B cells undergoing somatic hypermutation and selection that results in affinity maturation. Tight control of TFH numbers maintains self-tolerance. We describe a population of Foxp3+Blimp-1+CD4+ T cells constituting 10-25% of the CXCR5highPD-1highCD4+ T cells found in germinal center after immunization. These follicular regulatory T cells (TFR) share phenotypic characteristics with TFH and conventional Foxp3+ regulatory T cells (Treg) yet are distinct from either. Similar to TFH cells, TFR development depends on Bcl-6, SAP, CD28 and B cells; however TFR originate from thymic-derived Foxp3+ precursors, not naïve or TFH cells. TFR are suppressive in vitro and limit TFH and germinal center B cell numbers in vivo. In the absence of TFR, an outgrowth of non-antigen-specific B cells in germinal centers leads to fewer antigen-specific cells. Thus, Treg cells use the TFH differentiation pathway to produce specialized suppressor cells that control the germinal center response.
Follicular helper T (Tfh) cells provide selection signals to germinal center B cells, which is essential for long-lived antibody responses. High CXCR5 and low CCR7 expression facilitates their homing to B cell follicles and distinguishes them from T helper 1 (Th1), Th2, and Th17 cells. Here, we showed that Bcl-6 directs Tfh cell differentiation: Bcl-6-deficient T cells failed to develop into Tfh cells and could not sustain germinal center responses, whereas forced expression of Bcl-6 in CD4(+) T cells promoted expression of the hallmark Tfh cell molecules CXCR5, CXCR4, and PD-1. Bcl-6 bound to the promoters of the Th1 and Th17 cell transcriptional regulators T-bet and RORgammat and repressed IFN-gamma and IL-17 production. Bcl-6 also repressed expression of many microRNAs (miRNAs) predicted to control the Tfh cell signature, including miR-17-92, which repressed CXCR5 expression. Thus, Bcl-6 positively directs Tfh cell differentiation, through combined repression of miRNAs and transcription factors.
Although T cell help for B cells was described several decades ago, it was the identification of CXCR5 expression by B follicular helper T (Tfh) cells and the subsequent discovery of their dependence on BCL6 that led to the recognition of Tfh cells as an independent helper subset and accelerated the pace of discovery. More than 20 transcription factors, together with RNA-binding proteins and microRNAs, control the expression of chemotactic receptors and molecules important for the function and homeostasis of Tfh cells. Tfh cells prime B cells to initiate extrafollicular and germinal center antibody responses and are crucial for affinity maturation and maintenance of humoral memory. In addition to the roles that Tfh cells have in antimicrobial defense, in cancer, and as HIV reservoirs, regulation of these cells is critical to prevent autoimmunity. The realization that follicular T cells are heterogeneous, comprising helper and regulatory subsets, has raised questions regarding a possible division of labor in germinal center B cell selection and elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.