Bedrock weathering regulates nutrient mobilization, water storage, and soil production.Relative to the mobile soil layer, little is known about the relationship between topography and bedrock weathering. Here, we identify a common pattern of weathering and water storage across a sequence of three ridges and valleys in the sedimentary Great Valley Sequence in Northern California that share a tectonic and climate history. Deep drilling, downhole logging, and characterization of chemistry and porosity reveal two weathering fronts. The shallower front is ∼7 m deep at the ridge of all three hillslopes, and marks the extent of pervasive fracturing and oxidation of pyrite and organic carbon. A deeper weathering front marks the extent of open fractures and discoloration. This front is 11 m deep under two ridges of similar ridge-valley spacing, but 17.5 m deep under a ridge with nearly twice the ridge-valley spacing. Hence, at ridge tops, the fraction of the hillslope relief that is weathered scales with hillslope length. In all three hillslopes, below this second weathering front, closed fractures and unweathered bedrock extend about one-half the hilltop elevation above the adjacent channels. Neutron probe surveys reveal that seasonally dynamic moisture is stored to approximately the same depth as the shallow weathering front. Under the channels that bound our study hillslopes, the two weathering fronts coincide and occur within centimeters of the ground surface. Our findings provide evidence for feedbacks between erosion and weathering in mountainous landscapes that result in systematic subsurface structuring and water routing.
Plain Language SummaryThe patterns of bedrock weathering concealed beneath the surface have important implications for the water cycle. In many upland landscapes, sequences of ridges and valleys result from river incision into bedrock, which organizes the landscape into hillslopes separated by channels. While surface topography of these landscapes is easily visible, the structure of weathered bedrock beneath the surface and its relationship to overlying topography are unknown. In this study, we observed systematic patterns of weathering and water storage under three hillslopes that make up a repeating ridge-valley sequence formed in sedimentary bedrock. Across the study area, weathering is thickest under ridges and thins downslope toward adjacent valleys, where fresh bedrock lies almost directly below channels. Interestingly, the depth of extensive weathering and seasonal water storage at the ridges was comparable across all three hillslopes, while open fractures and discoloration persist to a deeper depth under the longer hillslope. These observations provide a basis for scaling point measurements of weathering to the landscape scale, which is a much-needed tool for models of earth surface processes.
Bedrock vadose zone water storage (i.e., rock moisture) dynamics are rarely observed but potentially key to understanding drought responses. Exploiting a borehole network at a Mediterranean blue oak savanna site—Rancho Venada—we document how water storage capacity in deeply weathered bedrock profiles regulates woody plant water availability and groundwater recharge. The site is in the Northern California Coast Range within steeply dipping turbidites. In a wet year (water year 2019; 647 mm of precipitation), rock moisture was quickly replenished to a characteristic storage capacity, recharging groundwater that emerged at springs to generate streamflow. In the subsequent rainless summer growing season, rock moisture was depleted by about 93 mm. In two drought years that followed (212 and 121 mm of precipitation) the total amount of rock moisture gained each winter was about 54 and 20 mm, respectively, and declines were documented exceeding these amounts, resulting in progressively lower rock moisture content. Oaks, which are rooted into bedrock, demonstrated signs of water stress in drought, including reduced transpiration rates and extremely low water potentials. In the 2020–2021 drought, precipitation did not exceed storage capacity, resulting in variable belowground water storage, increased plant water stress, and no recharge or runoff. Rock moisture deficits (rather than soil moisture deficits) explain these responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.