charge transfer at surfaces [2] or by potentially increasing catalytic selectivity by the localization of minority carriers, [3] and have been predicted to form better transparent conducting oxides (TCOs) than materials that conduct through band transport. [4] But polaron transport is sluggish, and the polaron-induced limitations to charge carrier mobility are well known to the applied science community. [3,5,6] These limitations are especially prevalent in transition metal oxides, which are prone to form smallpolarons (tightly bound) due to the strong electron correlation within the valence d-orbitals. [7] For instance, next-generation p-type TCOs like CuAlO 2 and ZnRh 2 O 4 , which are essential to realizing low-power transparent electronics, have limited performance due to the low mobilities of smallpolarons. [8] The transport of small-polarons in energy-conversion materials have necessitated decreasing diffusion path dimensions to the nanometer length scale [3] and smallpolarons can establish a fundamental limit for the Fermi level in materials like Fe 2 O 3. [9] Similarly, in small-polaron oxides used as active materials in Li-ion batteries, the low mobility of polarons has been observed to slow down Li diffusion, leading to accumulation of Li-ions at the electrode interface and low battery capacities. [2] The small-polaron hopping model has been used for six decades to rationalize electronic charge transport in oxides. The model was developed for binary oxides, and, despite its significance, its accuracy has not been rigorously tested for higher-order oxides. Here, the small-polaron transport model is tested by using a spinel system with mixed cation oxidation states (Mn x Fe 3−x O 4). Using molecular-beam epitaxy (MBE), a series of single crystal Mn x Fe 3−x O 4 thin films with controlled stoichiometry, 0 ≤ x ≤ 2.3, and lattice strain are grown, and the cation site-occupation is determined through X-ray emission spectroscopy (XES). Density functional theory + U analysis shows that charge transport occurs only between like-cations (Fe/Fe or Mn/Mn). The site-occupation data and percolation models show that there are limited stoichiometric ranges for transport along Fe and Mn pathways. Furthermore, due to asymmetric hopping barriers and formation energies, the Oh Mn + + 2 2 polaron is energetically preferred to the Oh Fe + + 2 2 polaron, resulting in an asymmetric contribution of Mn/Mn pathways. All of these findings are not contained in the conventional small-polaron hopping model, highlighting its inadequacy. To correct the model, new parameters in the nearestneighbor hopping equation are introduced to account for percolation, cross-hopping, and polaron-distribution, and it is found that a near-perfect correlation can be made between experiment and theory for the electronic conductivity.
Understanding the mechanism and ultimately directing nanocrystal (NC) superlattice assembly and attachment have important implications on future advances in this emerging field. Here, we use 4D-STEM to investigate a monolayer of PbS NCs at various stages of the transformation from a hexatic assembly to a nonconnected square-like superlattice over large fields of view. Maps of nanobeam electron diffraction patterns acquired with an electron microscope pixel array detector (EMPAD) offer unprecedented detail into the 3D crystallographic alignment of the polyhedral NCs. Our analysis reveals that superlattice transformation is dominated by translation of prealigned NCs strongly coupled along the <11n>AL direction and occurs stochastically and gradually throughout single grains. We validate the generality of the proposed mechanism by examining the structure of analogous PbSe NC assemblies using conventional transmission electron microscopy and selected area electron diffraction. The experimental results presented here provide new mechanistic insights into NC self-assembly and oriented attachment.
A three-step method to create dense polycrystalline semiconductor thin films from nanocrystal liquid dispersions is described. First, suitable substrates are coated with nanocrystals using aerosol-jet printing. Second, the porous nanocrystal coatings are compacted using a weighted roller or a hydraulic press to increase the coating density. Finally, the resulting coating is annealed for grain growth. The approach is demonstrated for making polycrystalline films of copper zinc tin sulfide (CZTS), a new solar absorber composed of earth-abundant elements. The range of coating morphologies accessible through aerosol-jet printing is examined and their formation mechanisms are revealed. Crack-free albeit porous films are obtained if most of the solvent in the aerosolized dispersion droplets containing the nanocrystals evaporates before they impinge on the substrate. In this case, nanocrystals agglomerate in flight and arrive at the substrate as solid spherical agglomerates. These porous coatings are mechanically compacted, and the density of the coating increases with compaction pressure. Dense coatings annealed in sulfur produce large-grain (>1 μm) polycrystalline CZTS films with microstructure suitable for thin-film solar cells.
Epitaxially connected quantum dot solids have emerged as an interesting class of quantum confined materials with the potential for highly tunable electronic structures. Realization of the predicted emergent electronic properties has remained elusive due in part to defective interdot epitaxial connections. Thermal annealing has shown potential to eliminate such defects, but a direct understanding of this mechanism hinges on determining the nature of defects in the connections and how they respond to heating. Here, we use in situ heating in the scanning transmission electron microscope to probe the effect of heating on distinct defect types. We apply a real space, local strain mapping technique, which allows us to identify tensile and shear strain in the atomic lattice, highlighting tensile, shear, and bending defects in interdot connections. We also track the out-of-plane orientation of individual QDs and infer the prevalence of out-of-plane twisting and bending defects as a function of annealing. We find that tensile and shear defects are fully relaxed upon mild thermal annealing, while bending defects persist. Additionally, out-of-plane orientation tracking reveals an increase in correctly oriented QDs, pointing to a relaxation of either twisting defects or out-of-plane bending defects. While bending defects remain, highlighting the need for further study of orientational ordering during the preattachment phase of superlattice formation, these atomic-scale insights show that annealing can effectively eliminate tensile and shear defects, a promising step toward delocalization of charge carriers and tunable electronic properties.
Polycrystalline films were prepared by annealing coatings cast from colloidal dispersions of Cu 2 ZnSnS 4 (CZTS) nanocrystals in sulfur vapor. This nanocrystal dispersion-based route is a promising potential low-cost approach for production of low-cost thin-film solar cells. We studied the effects of nanocrystal size, sulfur pressure, and carbon concentration on the microstructure development and grain growth during annealing. Coatings prepared from dispersions of CZTS nanocrystals with an average diameter of either 5 or 35 nm were annealed for 10−60 min at 600 °C in 50 or 500 Torr of sulfur. The CZTS nanocrystal size influenced both the rate and mechanism of grain growth. When coatings composed of 5 nm nanocrystals are annealed, abnormal grain growth forms micrometer-scale CZTS grains on the surface of the coating. In contrast, when CZTS coatings composed of 35 nm nanocrystals are annealed, grains grow uniformly via normal grain growth. Grain growth rates increased with sulfur pressure regardless of the nanocrystal size. The presence of carbon, originating from ligands used to stabilize nanocrystal dispersions, enhances abnormal grain growth, but too much carbon eventually inhibits all grain growth. On the basis of these observations, we propose a mechanism for microstructure development during annealing of CZTS nanocrystal coatings in sulfur. While much research effort has been expended on the reduction of carbon from nanocrystal coatings prior to sulfidation or selenization by means of ligand exchange or preannealing treatments in the belief that reduced carbon concentration aids CZTS microstructure development and solar cell efficiencies, this work indicates that carbon plays a more complex and significant role in CZTS grain growth than previously assumed: carbon may be beneficial or even required for rapid grain growth during sulfidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.